Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
2.21 kB
import cv2
import numpy as np
def resize(image,long_dim):
h,w=image.shape[0],image.shape[1]
image=cv2.resize(image,(int(w*long_dim/max(h,w)),int(h*long_dim/max(h,w))))
return image
def draw_points(img,points,color=(0,255,0),radius=3):
dp = [(int(points[i, 0]), int(points[i, 1])) for i in range(points.shape[0])]
for i in range(points.shape[0]):
cv2.circle(img, dp[i],radius=radius,color=color)
return img
def draw_match(img1, img2, corr1, corr2,inlier=[True],color=None,radius1=1,radius2=1,resize=None):
if resize is not None:
scale1,scale2=[img1.shape[1]/resize[0],img1.shape[0]/resize[1]],[img2.shape[1]/resize[0],img2.shape[0]/resize[1]]
img1,img2=cv2.resize(img1, resize, interpolation=cv2.INTER_AREA),cv2.resize(img2, resize, interpolation=cv2.INTER_AREA)
corr1,corr2=corr1/np.asarray(scale1)[np.newaxis],corr2/np.asarray(scale2)[np.newaxis]
corr1_key = [cv2.KeyPoint(corr1[i, 0], corr1[i, 1], radius1) for i in range(corr1.shape[0])]
corr2_key = [cv2.KeyPoint(corr2[i, 0], corr2[i, 1], radius2) for i in range(corr2.shape[0])]
assert len(corr1) == len(corr2)
draw_matches = [cv2.DMatch(i, i, 0) for i in range(len(corr1))]
if color is None:
color = [(0, 255, 0) if cur_inlier else (0,0,255) for cur_inlier in inlier]
if len(color)==1:
display = cv2.drawMatches(img1, corr1_key, img2, corr2_key, draw_matches, None,
matchColor=color[0],
singlePointColor=color[0],
flags=4
)
else:
height,width=max(img1.shape[0],img2.shape[0]),img1.shape[1]+img2.shape[1]
display=np.zeros([height,width,3],np.uint8)
display[:img1.shape[0],:img1.shape[1]]=img1
display[:img2.shape[0],img1.shape[1]:]=img2
for i in range(len(corr1)):
left_x,left_y,right_x,right_y=int(corr1[i][0]),int(corr1[i][1]),int(corr2[i][0]+img1.shape[1]),int(corr2[i][1])
cur_color=(int(color[i][0]),int(color[i][1]),int(color[i][2]))
cv2.line(display, (left_x,left_y), (right_x,right_y),cur_color,1,lineType=cv2.LINE_AA)
return display