Spaces:
Running
Running
import os.path as osp | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset | |
from loguru import logger | |
from src.utils.dataset import read_megadepth_gray, read_megadepth_depth | |
class MegaDepthDataset(Dataset): | |
def __init__(self, | |
root_dir, | |
npz_path, | |
mode='train', | |
min_overlap_score=0.4, | |
img_resize=None, | |
df=None, | |
img_padding=False, | |
depth_padding=False, | |
augment_fn=None, | |
**kwargs): | |
""" | |
Manage one scene(npz_path) of MegaDepth dataset. | |
Args: | |
root_dir (str): megadepth root directory that has `phoenix`. | |
npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. | |
mode (str): options are ['train', 'val', 'test'] | |
min_overlap_score (float): how much a pair should have in common. In range of [0, 1]. Set to 0 when testing. | |
img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended. | |
This is useful during training with batches and testing with memory intensive algorithms. | |
df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize. | |
img_padding (bool): If set to 'True', zero-pad the image to squared size. This is useful during training. | |
depth_padding (bool): If set to 'True', zero-pad depthmap to (2000, 2000). This is useful during training. | |
augment_fn (callable, optional): augments images with pre-defined visual effects. | |
""" | |
super().__init__() | |
self.root_dir = root_dir | |
self.mode = mode | |
self.scene_id = npz_path.split('.')[0] | |
# prepare scene_info and pair_info | |
if mode == 'test' and min_overlap_score != 0: | |
logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.") | |
min_overlap_score = 0 | |
self.scene_info = np.load(npz_path, allow_pickle=True) | |
self.pair_infos = self.scene_info['pair_infos'].copy() | |
del self.scene_info['pair_infos'] | |
self.pair_infos = [pair_info for pair_info in self.pair_infos if pair_info[1] > min_overlap_score] | |
# parameters for image resizing, padding and depthmap padding | |
if mode == 'train': | |
assert img_resize is not None and img_padding and depth_padding | |
self.img_resize = img_resize | |
self.df = df | |
self.img_padding = img_padding | |
self.depth_max_size = 2000 if depth_padding else None # the upperbound of depthmaps size in megadepth. | |
# for training LoFTR | |
self.augment_fn = augment_fn if mode == 'train' else None | |
self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125) | |
def __len__(self): | |
return len(self.pair_infos) | |
def __getitem__(self, idx): | |
(idx0, idx1), overlap_score, central_matches = self.pair_infos[idx] | |
# read grayscale image and mask. (1, h, w) and (h, w) | |
img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0]) | |
img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1]) | |
# TODO: Support augmentation & handle seeds for each worker correctly. | |
image0, mask0, scale0 = read_megadepth_gray( | |
img_name0, self.img_resize, self.df, self.img_padding, None) | |
# np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) | |
image1, mask1, scale1 = read_megadepth_gray( | |
img_name1, self.img_resize, self.df, self.img_padding, None) | |
# np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) | |
# read depth. shape: (h, w) | |
if self.mode in ['train', 'val']: | |
depth0 = read_megadepth_depth( | |
osp.join(self.root_dir, self.scene_info['depth_paths'][idx0]), pad_to=self.depth_max_size) | |
depth1 = read_megadepth_depth( | |
osp.join(self.root_dir, self.scene_info['depth_paths'][idx1]), pad_to=self.depth_max_size) | |
else: | |
depth0 = depth1 = torch.tensor([]) | |
# read intrinsics of original size | |
K_0 = torch.tensor(self.scene_info['intrinsics'][idx0].copy(), dtype=torch.float).reshape(3, 3) | |
K_1 = torch.tensor(self.scene_info['intrinsics'][idx1].copy(), dtype=torch.float).reshape(3, 3) | |
# read and compute relative poses | |
T0 = self.scene_info['poses'][idx0] | |
T1 = self.scene_info['poses'][idx1] | |
T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] # (4, 4) | |
T_1to0 = T_0to1.inverse() | |
data = { | |
'image0': image0, # (1, h, w) | |
'depth0': depth0, # (h, w) | |
'image1': image1, | |
'depth1': depth1, | |
'T_0to1': T_0to1, # (4, 4) | |
'T_1to0': T_1to0, | |
'K0': K_0, # (3, 3) | |
'K1': K_1, | |
'scale0': scale0, # [scale_w, scale_h] | |
'scale1': scale1, | |
'dataset_name': 'MegaDepth', | |
'scene_id': self.scene_id, | |
'pair_id': idx, | |
'pair_names': (self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]), | |
} | |
# for LoFTR training | |
if mask0 is not None: # img_padding is True | |
if self.coarse_scale: | |
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(), | |
scale_factor=self.coarse_scale, | |
mode='nearest', | |
recompute_scale_factor=False)[0].bool() | |
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1}) | |
return data | |