Spaces:
Running
Running
import bisect | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib | |
from copy import deepcopy | |
def _compute_conf_thresh(data): | |
dataset_name = data['dataset_name'][0].lower() | |
if dataset_name == 'scannet': | |
thr = 5e-4 | |
elif dataset_name == 'megadepth' or dataset_name=='gl3d': | |
thr = 1e-4 | |
else: | |
raise ValueError(f'Unknown dataset: {dataset_name}') | |
return thr | |
# --- VISUALIZATION --- # | |
def make_matching_figure( | |
img0, img1, mkpts0, mkpts1, color, | |
kpts0=None, kpts1=None, text=[], dpi=75, path=None): | |
# draw image pair | |
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' | |
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) | |
axes[0].imshow(img0, cmap='gray') | |
axes[1].imshow(img1, cmap='gray') | |
for i in range(2): # clear all frames | |
axes[i].get_yaxis().set_ticks([]) | |
axes[i].get_xaxis().set_ticks([]) | |
for spine in axes[i].spines.values(): | |
spine.set_visible(False) | |
plt.tight_layout(pad=1) | |
if kpts0 is not None: | |
assert kpts1 is not None | |
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2) | |
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2) | |
# draw matches | |
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: | |
fig.canvas.draw() | |
transFigure = fig.transFigure.inverted() | |
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) | |
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) | |
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), | |
(fkpts0[i, 1], fkpts1[i, 1]), | |
transform=fig.transFigure, c=color[i], linewidth=1) | |
for i in range(len(mkpts0))] | |
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4) | |
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4) | |
# put txts | |
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w' | |
fig.text( | |
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, | |
fontsize=15, va='top', ha='left', color=txt_color) | |
# save or return figure | |
if path: | |
plt.savefig(str(path), bbox_inches='tight', pad_inches=0) | |
plt.close() | |
else: | |
return fig | |
def _make_evaluation_figure(data, b_id, alpha='dynamic'): | |
b_mask = data['m_bids'] == b_id | |
conf_thr = _compute_conf_thresh(data) | |
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
kpts0 = data['mkpts0_f'][b_mask].cpu().numpy() | |
kpts1 = data['mkpts1_f'][b_mask].cpu().numpy() | |
# for megadepth, we visualize matches on the resized image | |
if 'scale0' in data: | |
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]] | |
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]] | |
epi_errs = data['epi_errs'][b_mask].cpu().numpy() | |
correct_mask = epi_errs < conf_thr | |
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 | |
n_correct = np.sum(correct_mask) | |
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) | |
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) | |
# recall might be larger than 1, since the calculation of conf_matrix_gt | |
# uses groundtruth depths and camera poses, but epipolar distance is used here. | |
# matching info | |
if alpha == 'dynamic': | |
alpha = dynamic_alpha(len(correct_mask)) | |
color = error_colormap(epi_errs, conf_thr, alpha=alpha) | |
text = [ | |
f'#Matches {len(kpts0)}', | |
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', | |
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' | |
] | |
# make the figure | |
figure = make_matching_figure(img0, img1, kpts0, kpts1, | |
color, text=text) | |
return figure | |
def _make_evaluation_figure_offset(data, b_id, alpha='dynamic',side=''): | |
layer_num=data['predict_flow'][0].shape[0] | |
b_mask = data['offset_bids'+side] == b_id | |
conf_thr = 2e-3 #hardcode for scannet(coarse level) | |
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
figure_list=[] | |
#draw offset matches in different layers | |
for layer_index in range(layer_num): | |
l_mask=data['offset_lids'+side]==layer_index | |
mask=l_mask&b_mask | |
kpts0 = data['offset_kpts0_f'+side][mask].cpu().numpy() | |
kpts1 = data['offset_kpts1_f'+side][mask].cpu().numpy() | |
epi_errs = data['epi_errs_offset'+side][mask].cpu().numpy() | |
correct_mask = epi_errs < conf_thr | |
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 | |
n_correct = np.sum(correct_mask) | |
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) | |
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) | |
# recall might be larger than 1, since the calculation of conf_matrix_gt | |
# uses groundtruth depths and camera poses, but epipolar distance is used here. | |
# matching info | |
if alpha == 'dynamic': | |
alpha = dynamic_alpha(len(correct_mask)) | |
color = error_colormap(epi_errs, conf_thr, alpha=alpha) | |
text = [ | |
f'#Matches {len(kpts0)}', | |
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', | |
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' | |
] | |
# make the figure | |
#import pdb;pdb.set_trace() | |
figure = make_matching_figure(deepcopy(img0), deepcopy(img1) , kpts0, kpts1, | |
color, text=text) | |
figure_list.append(figure) | |
return figure | |
def _make_confidence_figure(data, b_id): | |
# TODO: Implement confidence figure | |
raise NotImplementedError() | |
def make_matching_figures(data, config, mode='evaluation'): | |
""" Make matching figures for a batch. | |
Args: | |
data (Dict): a batch updated by PL_LoFTR. | |
config (Dict): matcher config | |
Returns: | |
figures (Dict[str, List[plt.figure]] | |
""" | |
assert mode in ['evaluation', 'confidence'] # 'confidence' | |
figures = {mode: []} | |
for b_id in range(data['image0'].size(0)): | |
if mode == 'evaluation': | |
fig = _make_evaluation_figure( | |
data, b_id, | |
alpha=config.TRAINER.PLOT_MATCHES_ALPHA) | |
elif mode == 'confidence': | |
fig = _make_confidence_figure(data, b_id) | |
else: | |
raise ValueError(f'Unknown plot mode: {mode}') | |
figures[mode].append(fig) | |
return figures | |
def make_matching_figures_offset(data, config, mode='evaluation',side=''): | |
""" Make matching figures for a batch. | |
Args: | |
data (Dict): a batch updated by PL_LoFTR. | |
config (Dict): matcher config | |
Returns: | |
figures (Dict[str, List[plt.figure]] | |
""" | |
assert mode in ['evaluation', 'confidence'] # 'confidence' | |
figures = {mode: []} | |
for b_id in range(data['image0'].size(0)): | |
if mode == 'evaluation': | |
fig = _make_evaluation_figure_offset( | |
data, b_id, | |
alpha=config.TRAINER.PLOT_MATCHES_ALPHA,side=side) | |
elif mode == 'confidence': | |
fig = _make_evaluation_figure_offset(data, b_id) | |
else: | |
raise ValueError(f'Unknown plot mode: {mode}') | |
figures[mode].append(fig) | |
return figures | |
def dynamic_alpha(n_matches, | |
milestones=[0, 300, 1000, 2000], | |
alphas=[1.0, 0.8, 0.4, 0.2]): | |
if n_matches == 0: | |
return 1.0 | |
ranges = list(zip(alphas, alphas[1:] + [None])) | |
loc = bisect.bisect_right(milestones, n_matches) - 1 | |
_range = ranges[loc] | |
if _range[1] is None: | |
return _range[0] | |
return _range[1] + (milestones[loc + 1] - n_matches) / ( | |
milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1]) | |
def error_colormap(err, thr, alpha=1.0): | |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" | |
x = 1 - np.clip(err / (thr * 2), 0, 1) | |
return np.clip( | |
np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1) | |