Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
4.85 kB
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from random import shuffle, seed
from .gl3d.io import read_list, _parse_img, _parse_depth, _parse_kpts
from .utils.common import Notify
from .utils.photaug import photaug
class GL3DDataset(Dataset):
def __init__(self, dataset_dir, config, data_split, is_training):
self.dataset_dir = dataset_dir
self.config = config
self.is_training = is_training
self.data_split = data_split
self.match_set_list, self.global_img_list, \
self.global_depth_list = self.prepare_match_sets()
pass
def __len__(self):
return len(self.match_set_list)
def __getitem__(self, idx):
match_set_path = self.match_set_list[idx]
decoded = np.fromfile(match_set_path, dtype=np.float32)
idx0, idx1 = int(decoded[0]), int(decoded[1])
inlier_num = int(decoded[2])
ori_img_size0 = np.reshape(decoded[3:5], (2,))
ori_img_size1 = np.reshape(decoded[5:7], (2,))
K0 = np.reshape(decoded[7:16], (3, 3))
K1 = np.reshape(decoded[16:25], (3, 3))
rel_pose = np.reshape(decoded[34:46], (3, 4))
# parse images.
img0 = _parse_img(self.global_img_list, idx0, self.config)
img1 = _parse_img(self.global_img_list, idx1, self.config)
# parse depths
depth0 = _parse_depth(self.global_depth_list, idx0, self.config)
depth1 = _parse_depth(self.global_depth_list, idx1, self.config)
# photometric augmentation
img0 = photaug(img0)
img1 = photaug(img1)
return {
'img0': img0 / 255.,
'img1': img1 / 255.,
'depth0': depth0,
'depth1': depth1,
'ori_img_size0': ori_img_size0,
'ori_img_size1': ori_img_size1,
'K0': K0,
'K1': K1,
'rel_pose': rel_pose,
'inlier_num': inlier_num
}
def points_to_2D(self, pnts, H, W):
labels = np.zeros((H, W))
pnts = pnts.astype(int)
labels[pnts[:, 1], pnts[:, 0]] = 1
return labels
def prepare_match_sets(self, q_diff_thld=3, rot_diff_thld=60):
"""Get match sets.
Args:
is_training: Use training imageset or testing imageset.
data_split: Data split name.
Returns:
match_set_list: List of match sets path.
global_img_list: List of global image path.
global_context_feat_list:
"""
# get necessary lists.
gl3d_list_folder = os.path.join(self.dataset_dir, 'list', self.data_split)
global_info = read_list(os.path.join(
gl3d_list_folder, 'image_index_offset.txt'))
global_img_list = [os.path.join(self.dataset_dir, i) for i in read_list(
os.path.join(gl3d_list_folder, 'image_list.txt'))]
global_depth_list = [os.path.join(self.dataset_dir, i) for i in read_list(
os.path.join(gl3d_list_folder, 'depth_list.txt'))]
imageset_list_name = 'imageset_train.txt' if self.is_training else 'imageset_test.txt'
match_set_list = self.get_match_set_list(os.path.join(
gl3d_list_folder, imageset_list_name), q_diff_thld, rot_diff_thld)
return match_set_list, global_img_list, global_depth_list
def get_match_set_list(self, imageset_list_path, q_diff_thld, rot_diff_thld):
"""Get the path list of match sets.
Args:
imageset_list_path: Path to imageset list.
q_diff_thld: Threshold of image pair sampling regarding camera orientation.
Returns:
match_set_list: List of match set path.
"""
imageset_list = [os.path.join(self.dataset_dir, 'data', i)
for i in read_list(imageset_list_path)]
print(Notify.INFO, 'Use # imageset', len(imageset_list), Notify.ENDC)
match_set_list = []
# discard image pairs whose image simiarity is beyond the threshold.
for i in imageset_list:
match_set_folder = os.path.join(i, 'match_sets')
if os.path.exists(match_set_folder):
match_set_files = os.listdir(match_set_folder)
for val in match_set_files:
name, ext = os.path.splitext(val)
if ext == '.match_set':
splits = name.split('_')
q_diff = int(splits[2])
rot_diff = int(splits[3])
if q_diff >= q_diff_thld and rot_diff <= rot_diff_thld:
match_set_list.append(
os.path.join(match_set_folder, val))
print(Notify.INFO, 'Get # match sets', len(match_set_list), Notify.ENDC)
return match_set_list