Spaces:
Running
Running
import os | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
from random import shuffle, seed | |
from .gl3d.io import read_list, _parse_img, _parse_depth, _parse_kpts | |
from .utils.common import Notify | |
from .utils.photaug import photaug | |
class GL3DDataset(Dataset): | |
def __init__(self, dataset_dir, config, data_split, is_training): | |
self.dataset_dir = dataset_dir | |
self.config = config | |
self.is_training = is_training | |
self.data_split = data_split | |
self.match_set_list, self.global_img_list, \ | |
self.global_depth_list = self.prepare_match_sets() | |
pass | |
def __len__(self): | |
return len(self.match_set_list) | |
def __getitem__(self, idx): | |
match_set_path = self.match_set_list[idx] | |
decoded = np.fromfile(match_set_path, dtype=np.float32) | |
idx0, idx1 = int(decoded[0]), int(decoded[1]) | |
inlier_num = int(decoded[2]) | |
ori_img_size0 = np.reshape(decoded[3:5], (2,)) | |
ori_img_size1 = np.reshape(decoded[5:7], (2,)) | |
K0 = np.reshape(decoded[7:16], (3, 3)) | |
K1 = np.reshape(decoded[16:25], (3, 3)) | |
rel_pose = np.reshape(decoded[34:46], (3, 4)) | |
# parse images. | |
img0 = _parse_img(self.global_img_list, idx0, self.config) | |
img1 = _parse_img(self.global_img_list, idx1, self.config) | |
# parse depths | |
depth0 = _parse_depth(self.global_depth_list, idx0, self.config) | |
depth1 = _parse_depth(self.global_depth_list, idx1, self.config) | |
# photometric augmentation | |
img0 = photaug(img0) | |
img1 = photaug(img1) | |
return { | |
'img0': img0 / 255., | |
'img1': img1 / 255., | |
'depth0': depth0, | |
'depth1': depth1, | |
'ori_img_size0': ori_img_size0, | |
'ori_img_size1': ori_img_size1, | |
'K0': K0, | |
'K1': K1, | |
'rel_pose': rel_pose, | |
'inlier_num': inlier_num | |
} | |
def points_to_2D(self, pnts, H, W): | |
labels = np.zeros((H, W)) | |
pnts = pnts.astype(int) | |
labels[pnts[:, 1], pnts[:, 0]] = 1 | |
return labels | |
def prepare_match_sets(self, q_diff_thld=3, rot_diff_thld=60): | |
"""Get match sets. | |
Args: | |
is_training: Use training imageset or testing imageset. | |
data_split: Data split name. | |
Returns: | |
match_set_list: List of match sets path. | |
global_img_list: List of global image path. | |
global_context_feat_list: | |
""" | |
# get necessary lists. | |
gl3d_list_folder = os.path.join(self.dataset_dir, 'list', self.data_split) | |
global_info = read_list(os.path.join( | |
gl3d_list_folder, 'image_index_offset.txt')) | |
global_img_list = [os.path.join(self.dataset_dir, i) for i in read_list( | |
os.path.join(gl3d_list_folder, 'image_list.txt'))] | |
global_depth_list = [os.path.join(self.dataset_dir, i) for i in read_list( | |
os.path.join(gl3d_list_folder, 'depth_list.txt'))] | |
imageset_list_name = 'imageset_train.txt' if self.is_training else 'imageset_test.txt' | |
match_set_list = self.get_match_set_list(os.path.join( | |
gl3d_list_folder, imageset_list_name), q_diff_thld, rot_diff_thld) | |
return match_set_list, global_img_list, global_depth_list | |
def get_match_set_list(self, imageset_list_path, q_diff_thld, rot_diff_thld): | |
"""Get the path list of match sets. | |
Args: | |
imageset_list_path: Path to imageset list. | |
q_diff_thld: Threshold of image pair sampling regarding camera orientation. | |
Returns: | |
match_set_list: List of match set path. | |
""" | |
imageset_list = [os.path.join(self.dataset_dir, 'data', i) | |
for i in read_list(imageset_list_path)] | |
print(Notify.INFO, 'Use # imageset', len(imageset_list), Notify.ENDC) | |
match_set_list = [] | |
# discard image pairs whose image simiarity is beyond the threshold. | |
for i in imageset_list: | |
match_set_folder = os.path.join(i, 'match_sets') | |
if os.path.exists(match_set_folder): | |
match_set_files = os.listdir(match_set_folder) | |
for val in match_set_files: | |
name, ext = os.path.splitext(val) | |
if ext == '.match_set': | |
splits = name.split('_') | |
q_diff = int(splits[2]) | |
rot_diff = int(splits[3]) | |
if q_diff >= q_diff_thld and rot_diff <= rot_diff_thld: | |
match_set_list.append( | |
os.path.join(match_set_folder, val)) | |
print(Notify.INFO, 'Get # match sets', len(match_set_list), Notify.ENDC) | |
return match_set_list | |