Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
4.56 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .score import peakiness_score
class BaseNet(nn.Module):
""" Helper class to construct a fully-convolutional network that
extract a l2-normalized patch descriptor.
"""
def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False):
super(BaseNet, self).__init__()
self.inchan = inchan
self.curchan = inchan
self.dilated = dilated
self.dilation = dilation
self.bn = bn
self.bn_affine = bn_affine
def _make_bn(self, outd):
return nn.BatchNorm2d(outd, affine=self.bn_affine)
def _add_conv(self, outd, k=3, stride=1, dilation=1, bn=True, relu=True, k_pool = 1, pool_type='max', bias=False):
# as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer
d = self.dilation * dilation
# if self.dilated:
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1)
# self.dilation *= stride
# else:
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride)
conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride, bias=bias)
ops = nn.ModuleList([])
ops.append( nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params) )
if bn and self.bn: ops.append( self._make_bn(outd) )
if relu: ops.append( nn.ReLU(inplace=True) )
self.curchan = outd
if k_pool > 1:
if pool_type == 'avg':
ops.append(torch.nn.AvgPool2d(kernel_size=k_pool))
elif pool_type == 'max':
ops.append(torch.nn.MaxPool2d(kernel_size=k_pool))
else:
print(f"Error, unknown pooling type {pool_type}...")
return nn.Sequential(*ops)
class Quad_L2Net(BaseNet):
""" Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs.
"""
def __init__(self, dim=128, mchan=4, relu22=False, **kw):
BaseNet.__init__(self, **kw)
self.conv0 = self._add_conv( 8*mchan)
self.conv1 = self._add_conv( 8*mchan, bn=False)
self.bn1 = self._make_bn(8*mchan)
self.conv2 = self._add_conv( 16*mchan, stride=2)
self.conv3 = self._add_conv( 16*mchan, bn=False)
self.bn3 = self._make_bn(16*mchan)
self.conv4 = self._add_conv( 32*mchan, stride=2)
self.conv5 = self._add_conv( 32*mchan)
# replace last 8x8 convolution with 3 3x3 convolutions
self.conv6_0 = self._add_conv( 32*mchan)
self.conv6_1 = self._add_conv( 32*mchan)
self.conv6_2 = self._add_conv(dim, bn=False, relu=False)
self.out_dim = dim
self.moving_avg_params = nn.ParameterList([
Parameter(torch.tensor(1.), requires_grad=False),
Parameter(torch.tensor(1.), requires_grad=False),
Parameter(torch.tensor(1.), requires_grad=False)
])
def forward(self, x):
# x: [N, C, H, W]
x0 = self.conv0(x)
x1 = self.conv1(x0)
x1_bn = self.bn1(x1)
x2 = self.conv2(x1_bn)
x3 = self.conv3(x2)
x3_bn = self.bn3(x3)
x4 = self.conv4(x3_bn)
x5 = self.conv5(x4)
x6_0 = self.conv6_0(x5)
x6_1 = self.conv6_1(x6_0)
x6_2 = self.conv6_2(x6_1)
# calculate score map
comb_weights = torch.tensor([1., 2., 3.], device=x.device)
comb_weights /= torch.sum(comb_weights)
ksize = [3, 2, 1]
det_score_maps = []
for idx, xx in enumerate([x1, x3, x6_2]):
if self.training:
instance_max = torch.max(xx)
self.moving_avg_params[idx].data = self.moving_avg_params[idx] * 0.99 + instance_max.detach() * 0.01
else:
pass
alpha, beta = peakiness_score(xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx])
score_vol = alpha * beta
det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0]
det_score_map = F.interpolate(det_score_map, size=x.shape[2:], mode='bilinear', align_corners=True)
det_score_map = comb_weights[idx] * det_score_map
det_score_maps.append(det_score_map)
det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0)
# print([param.data for param in self.moving_avg_params])
return x6_2, det_score_map, x1, x3