Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
5.25 kB
import argparse
import cv2
import numpy as np
import os
import math
import subprocess
from tqdm import tqdm
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000)
if ransac_inliers is None or ransac_model.shape != (3,3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers):
"""Compute the angular error between two rotation matrices and two translation vectors.
Keyword arguments:
R -- 2D numpy array containing an estimated rotation
gt_R -- 2D numpy array containing the corresponding ground truth rotation
t -- 2D numpy array containing an estimated translation as column
gt_t -- 2D numpy array containing the corresponding ground truth translation
"""
inliers = inliers.ravel()
R = np.eye(3)
t = np.zeros((3,1))
sst = True
try:
_, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers)
except:
sst = False
# calculate angle between provided rotations
#
if sst:
dR = np.matmul(R, np.transpose(R_GT))
dR = cv2.Rodrigues(dR)[0]
dR = np.linalg.norm(dR) * 180 / math.pi
# calculate angle between provided translations
dT = float(np.dot(t_GT.T, t))
dT /= float(np.linalg.norm(t_GT))
if dT > 1 or dT < -1:
print("Domain warning! dT:",dT)
dT = max(-1,min(1,dT))
dT = math.acos(dT) * 180 / math.pi
dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
else:
dR, dT = 180.0, 180.0
return dR, dT
def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT):
try:
m_kp1 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_1/'+dark_name1)
m_kp2 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_2/'+dark_name2)
except:
return 180.0, 180.0
try:
E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K)
except:
E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None
dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers)
return dR, dT
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--histeq', action='store_true')
parser.add_argument('--dataset_dir', type=str, default='/data/hyz/MID/')
opt = parser.parse_args()
sizer = (960, 640)
focallength_x = 4.504986436499113e+03/(6744/sizer[0])
focallength_y = 4.513311442889859e+03/(4502/sizer[1])
K = np.eye(3)
K[0,0] = focallength_x
K[1,1] = focallength_y
K[0,2] = 3.363322177533149e+03/(6744/sizer[0])
K[1,2] = 2.291824660547715e+03/(4502/sizer[1])
Kinv = np.linalg.inv(K)
Kinvt = np.transpose(Kinv)
PE_MT = np.zeros((6, 8))
enhancer = 'None' if not opt.histeq else 'HistEQ'
for scene in ['Indoor', 'Outdoor']:
dir_base = opt.dataset_dir + '/' + scene + '/'
base_save = 'result_errors/' + scene + '/'
pair_list = sorted(os.listdir(dir_base))
os.makedirs(base_save, exist_ok=True)
for pair in tqdm(pair_list):
opention = 1
if scene == 'Outdoor':
pass
else:
if int(pair[4::]) <= 17:
opention = 0
else:
pass
name = []
files = sorted(os.listdir(dir_base+pair))
for file_ in files:
if file_.endswith('.cr2'):
name.append(file_[0:9])
ISO = ['00100', '00200', '00400', '00800', '01600', '03200', '06400', '12800']
if opention == 1:
Shutter_speed = ['0.005','0.01','0.025','0.05','0.17','0.5']
else:
Shutter_speed = ['0.01','0.02','0.05','0.1','0.3','1']
E_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'E_estimated.npy')
F_GT = np.dot(np.dot(Kinvt,E_GT),Kinv)
R_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'R_GT.npy')
t_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'T_GT.npy')
result_base_dir ='result/' +scene+'/'+pair+'/'
for iso in ISO:
for ex in Shutter_speed:
dark_name1 = name[0]+iso+'_'+ex+'_'+scene+'.npy'
dark_name2 = name[1]+iso+'_'+ex+'_'+scene+'.npy'
dr, dt = pose_evaluation(result_base_dir,dark_name1,dark_name2,enhancer,K,R_GT,t_GT)
PE_MT[Shutter_speed.index(ex),ISO.index(iso)] = max(dr, dt)
subprocess.check_output(['mkdir', '-p', base_save + pair + f'/{enhancer}/'])
np.save(base_save + pair + f'/{enhancer}/Pose_error_DarkFeat.npy', PE_MT)