Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
12.8 kB
import numpy as np
import torch
from pytlsd import lsd
from sklearn.cluster import DBSCAN
from .base_model import BaseModel
from .superpoint import SuperPoint, sample_descriptors
from ..geometry import warp_lines_torch
def lines_to_wireframe(lines, line_scores, all_descs, conf):
""" Given a set of lines, their score and dense descriptors,
merge close-by endpoints and compute a wireframe defined by
its junctions and connectivity.
Returns:
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
junc_scores: list of [num_junc] tensors with the junction score
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 junctions are connected
new_lines: the new set of [b_size, num_lines, 2, 2] lines
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the junctions of each endpoint
num_true_junctions: a list of the number of valid junctions for each image in the batch,
i.e. before filling with random ones
"""
b_size, _, _, _ = all_descs.shape
device = lines.device
endpoints = lines.reshape(b_size, -1, 2)
(junctions, junc_scores, junc_descs, connectivity, new_lines,
lines_junc_idx, num_true_junctions) = [], [], [], [], [], [], []
for bs in range(b_size):
# Cluster the junctions that are close-by
db = DBSCAN(eps=conf.nms_radius, min_samples=1).fit(
endpoints[bs].cpu().numpy())
clusters = db.labels_
n_clusters = len(set(clusters))
num_true_junctions.append(n_clusters)
# Compute the average junction and score for each cluster
clusters = torch.tensor(clusters, dtype=torch.long,
device=device)
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float,
device=device)
new_junc.scatter_reduce_(0, clusters[:, None].repeat(1, 2),
endpoints[bs], reduce='mean',
include_self=False)
junctions.append(new_junc)
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
new_scores.scatter_reduce_(
0, clusters, torch.repeat_interleave(line_scores[bs], 2),
reduce='mean', include_self=False)
junc_scores.append(new_scores)
# Compute the new lines
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
lines_junc_idx.append(clusters.reshape(-1, 2))
# Compute the junction connectivity
junc_connect = torch.eye(n_clusters, dtype=torch.bool,
device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
# Interpolate the new junction descriptors
junc_descs.append(sample_descriptors(
junctions[-1][None], all_descs[bs:(bs + 1)], 8)[0])
new_lines = torch.stack(new_lines, dim=0)
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
return (junctions, junc_scores, junc_descs, connectivity,
new_lines, lines_junc_idx, num_true_junctions)
class SPWireframeDescriptor(BaseModel):
default_conf = {
'sp_params': {
'has_detector': True,
'has_descriptor': True,
'descriptor_dim': 256,
'trainable': False,
# Inference
'return_all': True,
'sparse_outputs': True,
'nms_radius': 4,
'detection_threshold': 0.005,
'max_num_keypoints': 1000,
'force_num_keypoints': True,
'remove_borders': 4,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
'nms_radius': 3,
'max_n_junctions': 500,
},
'max_n_lines': 250,
'min_length': 15,
}
required_data_keys = ['image']
def _init(self, conf):
self.conf = conf
self.sp = SuperPoint(conf.sp_params)
def detect_lsd_lines(self, x, max_n_lines=None):
if max_n_lines is None:
max_n_lines = self.conf.max_n_lines
lines, scores, valid_lines = [], [], []
for b in range(len(x)):
# For each image on batch
img = (x[b].squeeze().cpu().numpy() * 255).astype(np.uint8)
if max_n_lines is None:
b_segs = lsd(img)
else:
for s in [0.3, 0.4, 0.5, 0.7, 0.8, 1.0]:
b_segs = lsd(img, scale=s)
if len(b_segs) >= max_n_lines:
break
segs_length = np.linalg.norm(b_segs[:, 2:4] - b_segs[:, 0:2], axis=1)
# Remove short lines
b_segs = b_segs[segs_length >= self.conf.min_length]
segs_length = segs_length[segs_length >= self.conf.min_length]
b_scores = b_segs[:, -1] * np.sqrt(segs_length)
# Take the most relevant segments with
indices = np.argsort(-b_scores)
if max_n_lines is not None:
indices = indices[:max_n_lines]
lines.append(torch.from_numpy(b_segs[indices, :4].reshape(-1, 2, 2)))
scores.append(torch.from_numpy(b_scores[indices]))
valid_lines.append(torch.ones_like(scores[-1], dtype=torch.bool))
lines = torch.stack(lines).to(x)
scores = torch.stack(scores).to(x)
valid_lines = torch.stack(valid_lines).to(x.device)
return lines, scores, valid_lines
def _forward(self, data):
b_size, _, h, w = data['image'].shape
device = data['image'].device
if not self.conf.sp_params.force_num_keypoints:
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
# Line detection
if 'lines' not in data or 'line_scores' not in data:
if 'original_img' in data:
# Detect more lines, because when projecting them to the image most of them will be discarded
lines, line_scores, valid_lines = self.detect_lsd_lines(
data['original_img'], self.conf.max_n_lines * 3)
# Apply the same transformation that is applied in homography_adaptation
lines, valid_lines2 = warp_lines_torch(lines, data['H'], False, data['image'].shape[-2:])
valid_lines = valid_lines & valid_lines2
lines[~valid_lines] = -1
line_scores[~valid_lines] = 0
# Re-sort the line segments to pick the ones that are inside the image and have bigger score
sorted_scores, sorting_indices = torch.sort(line_scores, dim=-1, descending=True)
line_scores = sorted_scores[:, :self.conf.max_n_lines]
sorting_indices = sorting_indices[:, :self.conf.max_n_lines]
lines = torch.take_along_dim(lines, sorting_indices[..., None, None], 1)
valid_lines = torch.take_along_dim(valid_lines, sorting_indices, 1)
else:
lines, line_scores, valid_lines = self.detect_lsd_lines(data['image'])
else:
lines, line_scores, valid_lines = data['lines'], data['line_scores'], data['valid_lines']
if line_scores.shape[-1] != 0:
line_scores /= (line_scores.new_tensor(1e-8) + line_scores.max(dim=1).values[:, None])
# SuperPoint prediction
pred = self.sp(data)
# Remove keypoints that are too close to line endpoints
if self.conf.wireframe_params.merge_points:
kp = pred['keypoints']
line_endpts = lines.reshape(b_size, -1, 2)
dist_pt_lines = torch.norm(
kp[:, :, None] - line_endpts[:, None], dim=-1)
# For each keypoint, mark it as valid or to remove
pts_to_remove = torch.any(
dist_pt_lines < self.conf.sp_params.nms_radius, dim=2)
# Simply remove them (we assume batch_size = 1 here)
assert len(kp) == 1
pred['keypoints'] = pred['keypoints'][0][~pts_to_remove[0]][None]
pred['keypoint_scores'] = pred['keypoint_scores'][0][~pts_to_remove[0]][None]
pred['descriptors'] = pred['descriptors'][0].T[~pts_to_remove[0]].T[None]
# Connect the lines together to form a wireframe
orig_lines = lines.clone()
if self.conf.wireframe_params.merge_line_endpoints and len(lines[0]) > 0:
# Merge first close-by endpoints to connect lines
(line_points, line_pts_scores, line_descs, line_association,
lines, lines_junc_idx, num_true_junctions) = lines_to_wireframe(
lines, line_scores, pred['all_descriptors'],
conf=self.conf.wireframe_params)
# Add the keypoints to the junctions and fill the rest with random keypoints
(all_points, all_scores, all_descs,
pl_associativity) = [], [], [], []
for bs in range(b_size):
all_points.append(torch.cat(
[line_points[bs], pred['keypoints'][bs]], dim=0))
all_scores.append(torch.cat(
[line_pts_scores[bs], pred['keypoint_scores'][bs]], dim=0))
all_descs.append(torch.cat(
[line_descs[bs], pred['descriptors'][bs]], dim=1))
associativity = torch.eye(len(all_points[-1]), dtype=torch.bool, device=device)
associativity[:num_true_junctions[bs], :num_true_junctions[bs]] = \
line_association[bs][:num_true_junctions[bs], :num_true_junctions[bs]]
pl_associativity.append(associativity)
all_points = torch.stack(all_points, dim=0)
all_scores = torch.stack(all_scores, dim=0)
all_descs = torch.stack(all_descs, dim=0)
pl_associativity = torch.stack(pl_associativity, dim=0)
else:
# Lines are independent
all_points = torch.cat([lines.reshape(b_size, -1, 2),
pred['keypoints']], dim=1)
n_pts = all_points.shape[1]
num_lines = lines.shape[1]
num_true_junctions = [num_lines * 2] * b_size
all_scores = torch.cat([
torch.repeat_interleave(line_scores, 2, dim=1),
pred['keypoint_scores']], dim=1)
pred['line_descriptors'] = self.endpoints_pooling(
lines, pred['all_descriptors'], (h, w))
all_descs = torch.cat([
pred['line_descriptors'].reshape(b_size, self.conf.sp_params.descriptor_dim, -1),
pred['descriptors']], dim=2)
pl_associativity = torch.eye(
n_pts, dtype=torch.bool,
device=device)[None].repeat(b_size, 1, 1)
lines_junc_idx = torch.arange(
num_lines * 2, device=device).reshape(1, -1, 2).repeat(b_size, 1, 1)
del pred['all_descriptors'] # Remove dense descriptors to save memory
torch.cuda.empty_cache()
return {'keypoints': all_points,
'keypoint_scores': all_scores,
'descriptors': all_descs,
'pl_associativity': pl_associativity,
'num_junctions': torch.tensor(num_true_junctions),
'lines': lines,
'orig_lines': orig_lines,
'lines_junc_idx': lines_junc_idx,
'line_scores': line_scores,
'valid_lines': valid_lines}
@staticmethod
def endpoints_pooling(segs, all_descriptors, img_shape):
assert segs.ndim == 4 and segs.shape[-2:] == (2, 2)
filter_shape = all_descriptors.shape[-2:]
scale_x = filter_shape[1] / img_shape[1]
scale_y = filter_shape[0] / img_shape[0]
scaled_segs = torch.round(segs * torch.tensor([scale_x, scale_y]).to(segs)).long()
scaled_segs[..., 0] = torch.clip(scaled_segs[..., 0], 0, filter_shape[1] - 1)
scaled_segs[..., 1] = torch.clip(scaled_segs[..., 1], 0, filter_shape[0] - 1)
line_descriptors = [all_descriptors[None, b, ..., torch.squeeze(b_segs[..., 1]), torch.squeeze(b_segs[..., 0])]
for b, b_segs in enumerate(scaled_segs)]
line_descriptors = torch.cat(line_descriptors)
return line_descriptors # Shape (1, 256, 308, 2)
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, pred, data):
return {}