Spaces:
Running
Running
import argparse | |
import os | |
from os.path import join | |
import cv2 | |
import torch | |
from matplotlib import pyplot as plt | |
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT | |
from .drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches | |
from .models.two_view_pipeline import TwoViewPipeline | |
def main(): | |
# Parse input parameters | |
parser = argparse.ArgumentParser( | |
prog='GlueStick Demo', | |
description='Demo app to show the point and line matches obtained by GlueStick') | |
parser.add_argument('-img1', default=join('resources' + os.path.sep + 'img1.jpg')) | |
parser.add_argument('-img2', default=join('resources' + os.path.sep + 'img2.jpg')) | |
parser.add_argument('--max_pts', type=int, default=1000) | |
parser.add_argument('--max_lines', type=int, default=300) | |
parser.add_argument('--skip-imshow', default=False, action='store_true') | |
args = parser.parse_args() | |
# Evaluation config | |
conf = { | |
'name': 'two_view_pipeline', | |
'use_lines': True, | |
'extractor': { | |
'name': 'wireframe', | |
'sp_params': { | |
'force_num_keypoints': False, | |
'max_num_keypoints': args.max_pts, | |
}, | |
'wireframe_params': { | |
'merge_points': True, | |
'merge_line_endpoints': True, | |
}, | |
'max_n_lines': args.max_lines, | |
}, | |
'matcher': { | |
'name': 'gluestick', | |
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'), | |
'trainable': False, | |
}, | |
'ground_truth': { | |
'from_pose_depth': False, | |
} | |
} | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
pipeline_model = TwoViewPipeline(conf).to(device).eval() | |
gray0 = cv2.imread(args.img1, 0) | |
gray1 = cv2.imread(args.img2, 0) | |
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1) | |
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None] | |
x = {'image0': torch_gray0, 'image1': torch_gray1} | |
pred = pipeline_model(x) | |
pred = batch_to_np(pred) | |
kp0, kp1 = pred["keypoints0"], pred["keypoints1"] | |
m0 = pred["matches0"] | |
line_seg0, line_seg1 = pred["lines0"], pred["lines1"] | |
line_matches = pred["line_matches0"] | |
valid_matches = m0 != -1 | |
match_indices = m0[valid_matches] | |
matched_kps0 = kp0[valid_matches] | |
matched_kps1 = kp1[match_indices] | |
valid_matches = line_matches != -1 | |
match_indices = line_matches[valid_matches] | |
matched_lines0 = line_seg0[valid_matches] | |
matched_lines1 = line_seg1[match_indices] | |
# Plot the matches | |
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR) | |
plot_images([img0, img1], ['Image 1 - detected lines', 'Image 2 - detected lines'], dpi=200, pad=2.0) | |
plot_lines([line_seg0, line_seg1], ps=4, lw=2) | |
plt.gcf().canvas.manager.set_window_title('Detected Lines') | |
plt.savefig('detected_lines.png') | |
plot_images([img0, img1], ['Image 1 - detected points', 'Image 2 - detected points'], dpi=200, pad=2.0) | |
plot_keypoints([kp0, kp1], colors='c') | |
plt.gcf().canvas.manager.set_window_title('Detected Points') | |
plt.savefig('detected_points.png') | |
plot_images([img0, img1], ['Image 1 - line matches', 'Image 2 - line matches'], dpi=200, pad=2.0) | |
plot_color_line_matches([matched_lines0, matched_lines1], lw=2) | |
plt.gcf().canvas.manager.set_window_title('Line Matches') | |
plt.savefig('line_matches.png') | |
plot_images([img0, img1], ['Image 1 - point matches', 'Image 2 - point matches'], dpi=200, pad=2.0) | |
plot_matches(matched_kps0, matched_kps1, 'green', lw=1, ps=0) | |
plt.gcf().canvas.manager.set_window_title('Point Matches') | |
plt.savefig('detected_points.png') | |
if not args.skip_imshow: | |
plt.show() | |
if __name__ == '__main__': | |
main() | |