Spaces:
Running
Running
import cv2 | |
import numpy as np | |
import torch | |
import os | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.insert(0, ROOT_DIR) | |
from superpoint import SuperPoint | |
def resize(img,resize): | |
img_h,img_w=img.shape[0],img.shape[1] | |
cur_size=max(img_h,img_w) | |
if len(resize)==1: | |
scale1,scale2=resize[0]/cur_size,resize[0]/cur_size | |
else: | |
scale1,scale2=resize[0]/img_h,resize[1]/img_w | |
new_h,new_w=int(img_h*scale1),int(img_w*scale2) | |
new_img=cv2.resize(img.astype('float32'),(new_w,new_h)).astype('uint8') | |
scale=np.asarray([scale2,scale1]) | |
return new_img,scale | |
class ExtractSIFT: | |
def __init__(self,config,root=True): | |
self.num_kp=config['num_kpt'] | |
self.contrastThreshold=config['det_th'] | |
self.resize=config['resize'] | |
self.root=root | |
def run(self, img_path): | |
self.sift = cv2.xfeatures2d.SIFT_create(nfeatures=self.num_kp, contrastThreshold=self.contrastThreshold) | |
img = cv2.imread(img_path,cv2.IMREAD_GRAYSCALE) | |
scale=[1,1] | |
if self.resize[0]!=-1: | |
img,scale=resize(img,self.resize) | |
cv_kp, desc = self.sift.detectAndCompute(img, None) | |
kp = np.array([[_kp.pt[0]/scale[1], _kp.pt[1]/scale[0], _kp.response] for _kp in cv_kp]) # N*3 | |
index=np.flip(np.argsort(kp[:,2])) | |
kp,desc=kp[index],desc[index] | |
if self.root: | |
desc=np.sqrt(abs(desc/(np.linalg.norm(desc,axis=-1,ord=1)[:,np.newaxis]+1e-8))) | |
return kp[:self.num_kp], desc[:self.num_kp] | |
class ExtractSuperpoint(object): | |
def __init__(self,config): | |
default_config = { | |
'descriptor_dim': 256, | |
'nms_radius': 4, | |
'detection_threshold': config['det_th'], | |
'max_keypoints': config['num_kpt'], | |
'remove_borders': 4, | |
'model_path':'../weights/sp/superpoint_v1.pth' | |
} | |
self.superpoint_extractor=SuperPoint(default_config) | |
self.superpoint_extractor.eval(),self.superpoint_extractor.cuda() | |
self.num_kp=config['num_kpt'] | |
if 'padding' in config.keys(): | |
self.padding=config['padding'] | |
else: | |
self.padding=False | |
self.resize=config['resize'] | |
def run(self,img_path): | |
img = cv2.imread(img_path,cv2.IMREAD_GRAYSCALE) | |
scale=1 | |
if self.resize[0]!=-1: | |
img,scale=resize(img,self.resize) | |
with torch.no_grad(): | |
result=self.superpoint_extractor(torch.from_numpy(img/255.).float()[None, None].cuda()) | |
score,kpt,desc=result['scores'][0],result['keypoints'][0],result['descriptors'][0] | |
score,kpt,desc=score.cpu().numpy(),kpt.cpu().numpy(),desc.cpu().numpy().T | |
kpt=np.concatenate([kpt/scale,score[:,np.newaxis]],axis=-1) | |
#padding randomly | |
if self.padding: | |
if len(kpt)<self.num_kp: | |
res=int(self.num_kp-len(kpt)) | |
pad_x,pad_desc=np.random.uniform(size=[res,2])*(img.shape[0]+img.shape[1])/2,np.random.uniform(size=[res,256]) | |
pad_kpt,pad_desc=np.concatenate([pad_x,np.zeros([res,1])],axis=-1),pad_desc/np.linalg.norm(pad_desc,axis=-1)[:,np.newaxis] | |
kpt,desc=np.concatenate([kpt,pad_kpt],axis=0),np.concatenate([desc,pad_desc],axis=0) | |
return kpt,desc | |