Spaces:
Running
Running
from abc import ABCMeta, abstractmethod | |
import os | |
import h5py | |
import numpy as np | |
from tqdm import trange | |
from torch.multiprocessing import Pool,set_start_method | |
set_start_method('spawn',force=True) | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) | |
sys.path.insert(0, ROOT_DIR) | |
from components import load_component | |
class BaseDumper(metaclass=ABCMeta): | |
def __init__(self,config): | |
self.config=config | |
self.img_seq=[] | |
self.dump_seq=[]#feature dump seq | |
def get_seqs(self): | |
raise NotImplementedError | |
def format_dump_folder(self): | |
raise NotImplementedError | |
def format_dump_data(self): | |
raise NotImplementedError | |
def initialize(self): | |
self.extractor=load_component('extractor',self.config['extractor']['name'],self.config['extractor']) | |
self.get_seqs() | |
self.format_dump_folder() | |
def extract(self,index): | |
img_path,dump_path=self.img_seq[index],self.dump_seq[index] | |
if not self.config['extractor']['overwrite'] and os.path.exists(dump_path): | |
return | |
kp, desc = self.extractor.run(img_path) | |
self.write_feature(kp,desc,dump_path) | |
def dump_feature(self): | |
print('Extrating features...') | |
self.num_img=len(self.dump_seq) | |
pool=Pool(self.config['extractor']['num_process']) | |
iteration_num=self.num_img//self.config['extractor']['num_process'] | |
if self.num_img%self.config['extractor']['num_process']!=0: | |
iteration_num+=1 | |
for index in trange(iteration_num): | |
indicies_list=range(index*self.config['extractor']['num_process'],min((index+1)*self.config['extractor']['num_process'],self.num_img)) | |
pool.map(self.extract,indicies_list) | |
pool.close() | |
pool.join() | |
def write_feature(self,pts, desc, filename): | |
with h5py.File(filename, "w") as ifp: | |
ifp.create_dataset('keypoints', pts.shape, dtype=np.float32) | |
ifp.create_dataset('descriptors', desc.shape, dtype=np.float32) | |
ifp["keypoints"][:] = pts | |
ifp["descriptors"][:] = desc | |
def form_standard_dataset(self): | |
dataset_path=os.path.join(self.config['dataset_dump_dir'],self.config['data_name']+\ | |
'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5') | |
pair_data_type=['K1','K2','R','T','e','f'] | |
num_pairs=len(self.data['K1']) | |
with h5py.File(dataset_path, 'w') as f: | |
print('collecting pair info...') | |
for type in pair_data_type: | |
dg=f.create_group(type) | |
for idx in range(num_pairs): | |
data_item=np.asarray(self.data[type][idx]) | |
dg.create_dataset(str(idx),data_item.shape,data_item.dtype,data=data_item) | |
for type in ['img_path1','img_path2']: | |
dg=f.create_group(type) | |
for idx in range(num_pairs): | |
dg.create_dataset(str(idx),[1],h5py.string_dtype(encoding='ascii'),data=self.data[type][idx].encode('ascii')) | |
#dump desc | |
print('collecting desc and kpt...') | |
desc1_g,desc2_g,kpt1_g,kpt2_g=f.create_group('desc1'),f.create_group('desc2'),f.create_group('kpt1'),f.create_group('kpt2') | |
for idx in trange(num_pairs): | |
desc_file1,desc_file2=h5py.File(self.data['fea_path1'][idx],'r'),h5py.File(self.data['fea_path2'][idx],'r') | |
desc1,desc2,kpt1,kpt2=desc_file1['descriptors'][()],desc_file2['descriptors'][()],desc_file1['keypoints'][()],desc_file2['keypoints'][()] | |
desc1_g.create_dataset(str(idx),desc1.shape,desc1.dtype,data=desc1) | |
desc2_g.create_dataset(str(idx),desc2.shape,desc2.dtype,data=desc2) | |
kpt1_g.create_dataset(str(idx),kpt1.shape,kpt1.dtype,data=kpt1) | |
kpt2_g.create_dataset(str(idx),kpt2.shape,kpt2.dtype,data=kpt2) | |