Spaces:
Running
Running
import argparse | |
def str2bool(v): | |
return v.lower() in ("true", "1") | |
arg_lists = [] | |
parser = argparse.ArgumentParser() | |
def add_argument_group(name): | |
arg = parser.add_argument_group(name) | |
arg_lists.append(arg) | |
return arg | |
# ----------------------------------------------------------------------------- | |
# Network | |
net_arg = add_argument_group("Network") | |
net_arg.add_argument( | |
"--model_name", type=str,default='SGM', help="" | |
"model for training") | |
net_arg.add_argument( | |
"--config_path", type=str,default='configs/sgm.yaml', help="" | |
"config path for model") | |
# ----------------------------------------------------------------------------- | |
# Data | |
data_arg = add_argument_group("Data") | |
data_arg.add_argument( | |
"--rawdata_path", type=str, default='rawdata', help="" | |
"path for rawdata") | |
data_arg.add_argument( | |
"--dataset_path", type=str, default='dataset', help="" | |
"path for dataset") | |
data_arg.add_argument( | |
"--desc_path", type=str, default='desc', help="" | |
"path for descriptor(kpt) dir") | |
data_arg.add_argument( | |
"--num_kpt", type=int, default=1000, help="" | |
"number of kpt for training") | |
data_arg.add_argument( | |
"--input_normalize", type=str, default='img', help="" | |
"normalize type for input kpt, img or intrinsic") | |
data_arg.add_argument( | |
"--data_aug", type=str2bool, default=True, help="" | |
"apply kpt coordinate homography augmentation") | |
data_arg.add_argument( | |
"--desc_suffix", type=str, default='suffix', help="" | |
"desc file suffix") | |
# ----------------------------------------------------------------------------- | |
# Loss | |
loss_arg = add_argument_group("loss") | |
loss_arg.add_argument( | |
"--momentum", type=float, default=0.9, help="" | |
"momentum") | |
loss_arg.add_argument( | |
"--seed_loss_weight", type=float, default=250, help="" | |
"confidence loss weight for sgm") | |
loss_arg.add_argument( | |
"--mid_loss_weight", type=float, default=1, help="" | |
"midseeding loss weight for sgm") | |
loss_arg.add_argument( | |
"--inlier_th", type=float, default=5e-3, help="" | |
"inlier threshold for epipolar distance (for sgm and visualization)") | |
# ----------------------------------------------------------------------------- | |
# Training | |
train_arg = add_argument_group("Train") | |
train_arg.add_argument( | |
"--train_lr", type=float, default=1e-4, help="" | |
"learning rate") | |
train_arg.add_argument( | |
"--train_batch_size", type=int, default=16, help="" | |
"batch size") | |
train_arg.add_argument( | |
"--gpu_id", type=str,default='0', help='id(s) for CUDA_VISIBLE_DEVICES') | |
train_arg.add_argument( | |
"--train_iter", type=int, default=1000000, help="" | |
"training iterations to perform") | |
train_arg.add_argument( | |
"--log_base", type=str, default="./log/", help="" | |
"log path") | |
train_arg.add_argument( | |
"--val_intv", type=int, default=20000, help="" | |
"validation interval") | |
train_arg.add_argument( | |
"--save_intv", type=int, default=1000, help="" | |
"summary interval") | |
train_arg.add_argument( | |
"--log_intv", type=int, default=100, help="" | |
"log interval") | |
train_arg.add_argument( | |
"--decay_rate", type=float, default=0.999996, help="" | |
"lr decay rate") | |
train_arg.add_argument( | |
"--decay_iter", type=float, default=300000, help="" | |
"lr decay iter") | |
train_arg.add_argument( | |
"--local_rank", type=int, default=0, help="" | |
"local rank for ddp") | |
train_arg.add_argument( | |
"--train_vis_folder", type=str, default='.', help="" | |
"visualization folder during training") | |
# ----------------------------------------------------------------------------- | |
# Visualization | |
vis_arg = add_argument_group('Visualization') | |
vis_arg.add_argument( | |
"--tqdm_width", type=int, default=79, help="" | |
"width of the tqdm bar" | |
) | |
def get_config(): | |
config, unparsed = parser.parse_known_args() | |
return config, unparsed | |
def print_usage(): | |
parser.print_usage() | |
# | |
# config.py ends here |