Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
32.7 kB
"""
File to process and load the Holicity dataset.
"""
import os
import math
import copy
import PIL
import numpy as np
import h5py
import cv2
import pickle
from skimage.io import imread
from skimage import color
import torch
import torch.utils.data.dataloader as torch_loader
from torch.utils.data import Dataset
from torchvision import transforms
from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from .transforms.utils import random_scaling
from .synthetic_util import get_line_heatmap
from ..misc.geometry_utils import warp_points, mask_points
from ..misc.train_utils import parse_h5_data
def holicity_collate_fn(batch):
""" Customized collate_fn. """
batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
"heatmap_pos", "heatmap_neg", "homography",
"line_points", "line_indices"]
list_keys = ["junctions", "line_map", "line_map_pos",
"line_map_neg", "file_key"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ in data_key for _ in batch_keys])
list_match = sum([_ in data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate(
[b[data_key] for b in batch])
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError(
"[Error] A key matches batch keys and list keys simultaneously.")
return outputs
class HolicityDataset(Dataset):
def __init__(self, mode="train", config=None):
super(HolicityDataset, self).__init__()
if not mode in ["train", "test"]:
raise ValueError(
"[Error] Unknown mode for Holicity dataset. Only 'train' and 'test'.")
self.mode = mode
if config is None:
self.config = self.get_default_config()
else:
self.config = config
# Also get the default config
self.default_config = self.get_default_config()
# Get cache setting
self.dataset_name = self.get_dataset_name()
self.cache_name = self.get_cache_name()
self.cache_path = cfg.holicity_cache_path
# Get the ground truth source if it exists
self.gt_source = None
if "gt_source_%s"%(self.mode) in self.config:
self.gt_source = self.config.get("gt_source_%s"%(self.mode))
self.gt_source = os.path.join(cfg.export_dataroot, self.gt_source)
# Check the full path exists
if not os.path.exists(self.gt_source):
raise ValueError(
"[Error] The specified ground truth source does not exist.")
# Get the filename dataset
print("[Info] Initializing Holicity dataset...")
self.filename_dataset, self.datapoints = self.construct_dataset()
# Get dataset length
self.dataset_length = len(self.datapoints)
# Print some info
print("[Info] Successfully initialized dataset")
print("\t Name: Holicity")
print("\t Mode: %s" %(self.mode))
print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode),
"None")))
print("\t Counts: %d" %(self.dataset_length))
print("----------------------------------------")
#######################################
## Dataset construction related APIs ##
#######################################
def construct_dataset(self):
""" Construct the dataset (from scratch or from cache). """
# Check if the filename cache exists
# If cache exists, load from cache
if self.check_dataset_cache():
print("\t Found filename cache %s at %s"%(self.cache_name,
self.cache_path))
print("\t Load filename cache...")
filename_dataset, datapoints = self.get_filename_dataset_from_cache()
# If not, initialize dataset from scratch
else:
print("\t Can't find filename cache ...")
print("\t Create filename dataset from scratch...")
filename_dataset, datapoints = self.get_filename_dataset()
print("\t Create filename dataset cache...")
self.create_filename_dataset_cache(filename_dataset, datapoints)
return filename_dataset, datapoints
def create_filename_dataset_cache(self, filename_dataset, datapoints):
""" Create filename dataset cache for faster initialization. """
# Check cache path exists
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
cache_file_path = os.path.join(self.cache_path, self.cache_name)
data = {
"filename_dataset": filename_dataset,
"datapoints": datapoints
}
with open(cache_file_path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
def get_filename_dataset_from_cache(self):
""" Get filename dataset from cache. """
# Load from pkl cache
cache_file_path = os.path.join(self.cache_path, self.cache_name)
with open(cache_file_path, "rb") as f:
data = pickle.load(f)
return data["filename_dataset"], data["datapoints"]
def get_filename_dataset(self):
""" Get the path to the dataset. """
if self.mode == "train":
# Contains 5720 or 11872 images
dataset_path = [os.path.join(cfg.holicity_dataroot, p)
for p in self.config["train_splits"]]
else:
# Test mode - Contains 520 images
dataset_path = [os.path.join(cfg.holicity_dataroot, "2018-03")]
# Get paths to all image files
image_paths = []
for folder in dataset_path:
image_paths += [os.path.join(folder, img)
for img in os.listdir(folder)
if os.path.splitext(img)[-1] == ".jpg"]
image_paths = sorted(image_paths)
# Verify all the images exist
for idx in range(len(image_paths)):
image_path = image_paths[idx]
if not (os.path.exists(image_path)):
raise ValueError(
"[Error] The image does not exist. %s"%(image_path))
# Construct the filename dataset
num_pad = int(math.ceil(math.log10(len(image_paths))) + 1)
filename_dataset = {}
for idx in range(len(image_paths)):
# Get the file key
key = self.get_padded_filename(num_pad, idx)
filename_dataset[key] = {"image": image_paths[idx]}
# Get the datapoints
datapoints = list(sorted(filename_dataset.keys()))
return filename_dataset, datapoints
def get_dataset_name(self):
""" Get dataset name from dataset config / default config. """
dataset_name = self.config.get("dataset_name",
self.default_config["dataset_name"])
dataset_name = dataset_name + "_%s" % self.mode
return dataset_name
def get_cache_name(self):
""" Get cache name from dataset config / default config. """
dataset_name = self.config.get("dataset_name",
self.default_config["dataset_name"])
dataset_name = dataset_name + "_%s" % self.mode
# Compose cache name
cache_name = dataset_name + "_cache.pkl"
return cache_name
def check_dataset_cache(self):
""" Check if dataset cache exists. """
cache_file_path = os.path.join(self.cache_path, self.cache_name)
if os.path.exists(cache_file_path):
return True
else:
return False
@staticmethod
def get_padded_filename(num_pad, idx):
""" Get the padded filename using adaptive padding. """
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def get_default_config(self):
""" Get the default configuration. """
return {
"dataset_name": "holicity",
"train_split": "2018-01",
"add_augmentation_to_all_splits": False,
"preprocessing": {
"resize": [512, 512],
"blur_size": 11
},
"augmentation":{
"photometric":{
"enable": False
},
"homographic":{
"enable": False
},
},
}
############################################
## Pytorch and preprocessing related APIs ##
############################################
@staticmethod
def get_data_from_path(data_path):
""" Get data from the information from filename dataset. """
output = {}
# Get image data
image_path = data_path["image"]
image = imread(image_path)
output["image"] = image
return output
@staticmethod
def convert_line_map(lcnn_line_map, num_junctions):
""" Convert the line_pos or line_neg
(represented by two junction indexes) to our line map. """
# Initialize empty line map
line_map = np.zeros([num_junctions, num_junctions])
# Iterate through all the lines
for idx in range(lcnn_line_map.shape[0]):
index1 = lcnn_line_map[idx, 0]
index2 = lcnn_line_map[idx, 1]
line_map[index1, index2] = 1
line_map[index2, index1] = 1
return line_map
@staticmethod
def junc_to_junc_map(junctions, image_size):
""" Convert junction points to junction maps. """
junctions = np.round(junctions).astype(np.int)
# Clip the boundary by image size
junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1)
junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1)
# Create junction map
junc_map = np.zeros([image_size[0], image_size[1]])
junc_map[junctions[:, 0], junctions[:, 1]] = 1
return junc_map[..., None].astype(np.int)
def parse_transforms(self, names, all_transforms):
""" Parse the transform. """
trans = all_transforms if (names == 'all') \
else (names if isinstance(names, list) else [names])
assert set(trans) <= set(all_transforms)
return trans
def get_photo_transform(self):
""" Get list of photometric transforms (according to the config). """
# Get the photometric transform config
photo_config = self.config["augmentation"]["photometric"]
if not photo_config["enable"]:
raise ValueError(
"[Error] Photometric augmentation is not enabled.")
# Parse photometric transforms
trans_lst = self.parse_transforms(photo_config["primitives"],
photoaug.available_augmentations)
trans_config_lst = [photo_config["params"].get(p, {})
for p in trans_lst]
# List of photometric augmentation
photometric_trans_lst = [
getattr(photoaug, trans)(**conf) \
for (trans, conf) in zip(trans_lst, trans_config_lst)
]
return photometric_trans_lst
def get_homo_transform(self):
""" Get homographic transforms (according to the config). """
# Get homographic transforms for image
homo_config = self.config["augmentation"]["homographic"]["params"]
if not self.config["augmentation"]["homographic"]["enable"]:
raise ValueError(
"[Error] Homographic augmentation is not enabled")
# Parse the homographic transforms
image_shape = self.config["preprocessing"]["resize"]
# Compute the min_label_len from config
try:
min_label_tmp = self.config["generation"]["min_label_len"]
except:
min_label_tmp = None
# float label len => fraction
if isinstance(min_label_tmp, float): # Skip if not provided
min_label_len = min_label_tmp * min(image_shape)
# int label len => length in pixel
elif isinstance(min_label_tmp, int):
scale_ratio = (self.config["preprocessing"]["resize"]
/ self.config["generation"]["image_size"][0])
min_label_len = (self.config["generation"]["min_label_len"]
* scale_ratio)
# if none => no restriction
else:
min_label_len = 0
# Initialize the transform
homographic_trans = homoaug.homography_transform(
image_shape, homo_config, 0, min_label_len)
return homographic_trans
def get_line_points(self, junctions, line_map, H1=None, H2=None,
img_size=None, warp=False):
""" Sample evenly points along each line segments
and keep track of line idx. """
if np.sum(line_map) == 0:
# No segment detected in the image
line_indices = np.zeros(self.config["max_pts"], dtype=int)
line_points = np.zeros((self.config["max_pts"], 2), dtype=float)
return line_points, line_indices
# Extract all pairs of connected junctions
junc_indices = np.array(
[[i, j] for (i, j) in zip(*np.where(line_map)) if j > i])
line_segments = np.stack([junctions[junc_indices[:, 0]],
junctions[junc_indices[:, 1]]], axis=1)
# line_segments is (num_lines, 2, 2)
line_lengths = np.linalg.norm(
line_segments[:, 0] - line_segments[:, 1], axis=1)
# Sample the points separated by at least min_dist_pts along each line
# The number of samples depends on the length of the line
num_samples = np.minimum(line_lengths // self.config["min_dist_pts"],
self.config["max_num_samples"])
line_points = []
line_indices = []
cur_line_idx = 1
for n in np.arange(2, self.config["max_num_samples"] + 1):
# Consider all lines where we can fit up to n points
cur_line_seg = line_segments[num_samples == n]
line_points_x = np.linspace(cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 0],
n, axis=-1).flatten()
line_points_y = np.linspace(cur_line_seg[:, 0, 1],
cur_line_seg[:, 1, 1],
n, axis=-1).flatten()
jitter = self.config.get("jittering", 0)
if jitter:
# Add a small random jittering of all points along the line
angles = np.arctan2(
cur_line_seg[:, 1, 0] - cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 1] - cur_line_seg[:, 0, 1]).repeat(n)
jitter_hyp = (np.random.rand(len(angles)) * 2 - 1) * jitter
line_points_x += jitter_hyp * np.sin(angles)
line_points_y += jitter_hyp * np.cos(angles)
line_points.append(np.stack([line_points_x, line_points_y], axis=-1))
# Keep track of the line indices for each sampled point
num_cur_lines = len(cur_line_seg)
line_idx = np.arange(cur_line_idx, cur_line_idx + num_cur_lines)
line_indices.append(line_idx.repeat(n))
cur_line_idx += num_cur_lines
line_points = np.concatenate(line_points,
axis=0)[:self.config["max_pts"]]
line_indices = np.concatenate(line_indices,
axis=0)[:self.config["max_pts"]]
# Warp the points if need be, and filter unvalid ones
# If the other view is also warped
if warp and H2 is not None:
warp_points2 = warp_points(line_points, H2)
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
mask2 = mask_points(warp_points2, img_size)
mask = mask * mask2
# If the other view is not warped
elif warp and H2 is None:
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
else:
if H1 is not None:
raise ValueError("[Error] Wrong combination of homographies.")
# Remove points that would be outside of img_size if warped by H
warped_points = warp_points(line_points, H1)
mask = mask_points(warped_points, img_size)
line_points = line_points[mask]
line_indices = line_indices[mask]
# Pad the line points to a fixed length
# Index of 0 means padded line
line_indices = np.concatenate([line_indices, np.zeros(
self.config["max_pts"] - len(line_indices))], axis=0)
line_points = np.concatenate(
[line_points,
np.zeros((self.config["max_pts"] - len(line_points), 2),
dtype=float)], axis=0)
return line_points, line_indices
def export_preprocessing(self, data, numpy=False):
""" Preprocess the exported data. """
# Fetch the corresponding entries
image = data["image"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
image = photoaug.normalize_image()(image)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
return {"image": to_tensor(image)}
else:
return {"image": image}
def train_preprocessing_exported(
self, data, numpy=False, disable_homoaug=False, desc_training=False,
H1=None, H1_scale=None, H2=None, scale=1., h_crop=None, w_crop=None):
""" Train preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Define the random crop for scaling if necessary
if h_crop is None or w_crop is None:
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Check if we need to apply augmentations
# In training mode => yes.
# In homography adaptation mode (export mode) => No
if self.config["augmentation"]["photometric"]["enable"]:
photo_trans_lst = self.get_photo_transform()
### Image transform ###
np.random.shuffle(photo_trans_lst)
image_transform = transforms.Compose(
photo_trans_lst + [photoaug.normalize_image()])
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Perform the random scaling
if scale != 1.:
image, junctions, line_map, valid_mask = random_scaling(
image, junctions, line_map, scale,
h_crop=h_crop, w_crop=w_crop)
else:
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
# Initialize the empty output dict
outputs = {}
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
# Check homographic augmentation
warp = (self.config["augmentation"]["homographic"]["enable"]
and disable_homoaug == False)
if warp:
homo_trans = self.get_homo_transform()
# Perform homographic transform
if H1 is None:
homo_outputs = homo_trans(image, junctions, line_map,
valid_mask=valid_mask)
else:
homo_outputs = homo_trans(
image, junctions, line_map, homo=H1, scale=H1_scale,
valid_mask=valid_mask)
homography_mat = homo_outputs["homo"]
# Give the warp of the other view
if H1 is None:
H1 = homo_outputs["homo"]
# Sample points along each line segments for the descriptor
if desc_training:
line_points, line_indices = self.get_line_points(
junctions, line_map, H1=H1, H2=H2,
img_size=image_size, warp=warp)
# Record the warped results
if warp:
junctions = homo_outputs["junctions"] # Should be HW format
image = homo_outputs["warped_image"]
line_map = homo_outputs["line_map"]
valid_mask = homo_outputs["valid_mask"] # Same for pos and neg
heatmap = homo_outputs["warped_heatmap"]
# Optionally put warping information first.
if not numpy:
outputs["homography_mat"] = to_tensor(
homography_mat).to(torch.float32)[0, ...]
else:
outputs["homography_mat"] = homography_mat.astype(np.float32)
junction_map = self.junc_to_junc_map(junctions, image_size)
if not numpy:
outputs.update({
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
})
if desc_training:
outputs.update({
"line_points": to_tensor(
line_points).to(torch.float32)[0],
"line_indices": torch.tensor(line_indices,
dtype=torch.int)
})
else:
outputs.update({
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
})
if desc_training:
outputs.update({
"line_points": line_points.astype(np.float32),
"line_indices": line_indices.astype(int)
})
return outputs
def preprocessing_exported_paired_desc(self, data, numpy=False, scale=1.):
""" Train preprocessing for paired data for the exported labels
for descriptor training. """
outputs = {}
# Define the random crop for scaling if necessary
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Sample ref homography first
homo_config = self.config["augmentation"]["homographic"]["params"]
image_shape = self.config["preprocessing"]["resize"]
ref_H, ref_scale = homoaug.sample_homography(image_shape,
**homo_config)
# Data for target view (All augmentation)
target_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=None, H2=ref_H,
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Data for reference view (No homographical augmentation)
ref_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=ref_H,
H1_scale=ref_scale, H2=target_data['homography_mat'].numpy(),
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Spread ref data
for key, val in ref_data.items():
outputs["ref_" + key] = val
# Spread target data
for key, val in target_data.items():
outputs["target_" + key] = val
return outputs
def test_preprocessing_exported(self, data, numpy=False):
""" Test preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Still need to normalize image
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
junction_map = self.junc_to_junc_map(junctions, image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
outputs = {
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
outputs = {
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
}
return outputs
def __len__(self):
return self.dataset_length
def get_data_from_key(self, file_key):
""" Get data from file_key. """
# Check key exists
if not file_key in self.filename_dataset.keys():
raise ValueError(
"[Error] the specified key is not in the dataset.")
# Get the data paths
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels
data = self.get_data_from_path(data_path)
# Perform transform and augmentation
if (self.mode == "train"
or self.config["add_augmentation_to_all_splits"]):
data = self.train_preprocessing(data, numpy=True)
else:
data = self.test_preprocessing(data, numpy=True)
# Add file key to the output
data["file_key"] = file_key
return data
def __getitem__(self, idx):
"""Return data
file_key: str, keys used to retrieve data from the filename dataset.
image: torch.float, C*H*W range 0~1,
junctions: torch.float, N*2,
junction_map: torch.int32, 1*H*W range 0 or 1,
line_map: torch.int32, N*N range 0 or 1,
heatmap: torch.int32, 1*H*W range 0 or 1,
valid_mask: torch.int32, 1*H*W range 0 or 1
"""
# Get the corresponding datapoint and contents from filename dataset
file_key = self.datapoints[idx]
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels
data = self.get_data_from_path(data_path)
if self.gt_source:
with h5py.File(self.gt_source, "r") as f:
exported_label = parse_h5_data(f[file_key])
data["junctions"] = exported_label["junctions"]
data["line_map"] = exported_label["line_map"]
# Perform transform and augmentation
return_type = self.config.get("return_type", "single")
if self.gt_source is None:
# For export only
data = self.export_preprocessing(data)
elif (self.mode == "train"
or self.config["add_augmentation_to_all_splits"]):
# Perform random scaling first
if self.config["augmentation"]["random_scaling"]["enable"]:
scale_range = self.config["augmentation"]["random_scaling"]["range"]
# Decide the scaling
scale = np.random.uniform(min(scale_range), max(scale_range))
else:
scale = 1.
if self.mode == "train" and return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(data,
scale=scale)
else:
data = self.train_preprocessing_exported(data, scale=scale)
else:
if return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(data)
else:
data = self.test_preprocessing_exported(data)
# Add file key to the output
data["file_key"] = file_key
return data