Spaces:
Running
Running
""" | |
Line segment detection from raw images. | |
""" | |
import time | |
import numpy as np | |
import torch | |
from torch.nn.functional import softmax | |
from .model_util import get_model | |
from .loss import get_loss_and_weights | |
from .line_detection import LineSegmentDetectionModule | |
from ..train import convert_junc_predictions | |
from ..misc.train_utils import adapt_checkpoint | |
def line_map_to_segments(junctions, line_map): | |
""" Convert a line map to a Nx2x2 list of segments. """ | |
line_map_tmp = line_map.copy() | |
output_segments = np.zeros([0, 2, 2]) | |
for idx in range(junctions.shape[0]): | |
# if no connectivity, just skip it | |
if line_map_tmp[idx, :].sum() == 0: | |
continue | |
# Record the line segment | |
else: | |
for idx2 in np.where(line_map_tmp[idx, :] == 1)[0]: | |
p1 = junctions[idx, :] # HW format | |
p2 = junctions[idx2, :] | |
single_seg = np.concatenate([p1[None, ...], p2[None, ...]], | |
axis=0) | |
output_segments = np.concatenate( | |
(output_segments, single_seg[None, ...]), axis=0) | |
# Update line_map | |
line_map_tmp[idx, idx2] = 0 | |
line_map_tmp[idx2, idx] = 0 | |
return output_segments | |
class LineDetector(object): | |
def __init__(self, model_cfg, ckpt_path, device, line_detector_cfg, | |
junc_detect_thresh=None): | |
""" SOLD² line detector taking raw images as input. | |
Parameters: | |
model_cfg: config for CNN model | |
ckpt_path: path to the weights | |
line_detector_cfg: config file for the line detection module | |
""" | |
# Get loss weights if dynamic weighting | |
_, loss_weights = get_loss_and_weights(model_cfg, device) | |
self.device = device | |
# Initialize the cnn backbone | |
self.model = get_model(model_cfg, loss_weights) | |
checkpoint = torch.load(ckpt_path, map_location=self.device) | |
checkpoint = adapt_checkpoint(checkpoint["model_state_dict"]) | |
self.model.load_state_dict(checkpoint) | |
self.model = self.model.to(self.device) | |
self.model = self.model.eval() | |
self.grid_size = model_cfg["grid_size"] | |
if junc_detect_thresh is not None: | |
self.junc_detect_thresh = junc_detect_thresh | |
else: | |
self.junc_detect_thresh = model_cfg.get("detection_thresh", 1/65) | |
self.max_num_junctions = model_cfg.get("max_num_junctions", 300) | |
# Initialize the line detector | |
self.line_detector_cfg = line_detector_cfg | |
self.line_detector = LineSegmentDetectionModule(**line_detector_cfg) | |
def __call__(self, input_image, valid_mask=None, | |
return_heatmap=False, profile=False): | |
# Now we restrict input_image to 4D torch tensor | |
if ((not len(input_image.shape) == 4) | |
or (not isinstance(input_image, torch.Tensor))): | |
raise ValueError( | |
"[Error] the input image should be a 4D torch tensor.") | |
# Move the input to corresponding device | |
input_image = input_image.to(self.device) | |
# Forward of the CNN backbone | |
start_time = time.time() | |
with torch.no_grad(): | |
net_outputs = self.model(input_image) | |
junc_np = convert_junc_predictions( | |
net_outputs["junctions"], self.grid_size, | |
self.junc_detect_thresh, self.max_num_junctions) | |
if valid_mask is None: | |
junctions = np.where(junc_np["junc_pred_nms"].squeeze()) | |
else: | |
junctions = np.where(junc_np["junc_pred_nms"].squeeze() | |
* valid_mask) | |
junctions = np.concatenate( | |
[junctions[0][..., None], junctions[1][..., None]], axis=-1) | |
if net_outputs["heatmap"].shape[1] == 2: | |
# Convert to single channel directly from here | |
heatmap = softmax(net_outputs["heatmap"], dim=1)[:, 1:, :, :] | |
else: | |
heatmap = torch.sigmoid(net_outputs["heatmap"]) | |
heatmap = heatmap.cpu().numpy().transpose(0, 2, 3, 1)[0, :, :, 0] | |
# Run the line detector. | |
line_map, junctions, heatmap = self.line_detector.detect( | |
junctions, heatmap, device=self.device) | |
heatmap = heatmap.cpu().numpy() | |
if isinstance(line_map, torch.Tensor): | |
line_map = line_map.cpu().numpy() | |
if isinstance(junctions, torch.Tensor): | |
junctions = junctions.cpu().numpy() | |
line_segments = line_map_to_segments(junctions, line_map) | |
end_time = time.time() | |
outputs = {"line_segments": line_segments} | |
if return_heatmap: | |
outputs["heatmap"] = heatmap | |
if profile: | |
outputs["time"] = end_time - start_time | |
return outputs | |