Spaces:
Running
Running
import pytorch_lightning as pl | |
import argparse | |
import pprint | |
from loguru import logger as loguru_logger | |
from src.config.default import get_cfg_defaults | |
from src.utils.profiler import build_profiler | |
from src.lightning_trainer.data import MultiSceneDataModule | |
from src.lightning_trainer.trainer import PL_Trainer | |
def parse_args(): | |
# init a costum parser which will be added into pl.Trainer parser | |
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument( | |
'data_cfg_path', type=str, help='data config path') | |
parser.add_argument( | |
'main_cfg_path', type=str, help='main config path') | |
parser.add_argument( | |
'--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint') | |
parser.add_argument( | |
'--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir") | |
parser.add_argument( | |
'--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset') | |
parser.add_argument( | |
'--batch_size', type=int, default=1, help='batch_size per gpu') | |
parser.add_argument( | |
'--num_workers', type=int, default=2) | |
parser.add_argument( | |
'--thr', type=float, default=None, help='modify the coarse-level matching threshold.') | |
parser = pl.Trainer.add_argparse_args(parser) | |
return parser.parse_args() | |
if __name__ == '__main__': | |
# parse arguments | |
args = parse_args() | |
pprint.pprint(vars(args)) | |
# init default-cfg and merge it with the main- and data-cfg | |
config = get_cfg_defaults() | |
config.merge_from_file(args.main_cfg_path) | |
config.merge_from_file(args.data_cfg_path) | |
pl.seed_everything(config.TRAINER.SEED) # reproducibility | |
# tune when testing | |
if args.thr is not None: | |
config.MODEL.MATCH_COARSE.THR = args.thr | |
loguru_logger.info(f"Args and config initialized!") | |
# lightning module | |
profiler = build_profiler(args.profiler_name) | |
model = PL_Trainer(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir) | |
loguru_logger.info(f"Model-lightning initialized!") | |
# lightning data | |
data_module = MultiSceneDataModule(args, config) | |
loguru_logger.info(f"DataModule initialized!") | |
# lightning trainer | |
trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False) | |
loguru_logger.info(f"Start testing!") | |
trainer.test(model, datamodule=data_module, verbose=False) | |