Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
3.71 kB
from argparse import Namespace
import os
import torch
import cv2
from .base import Viz
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors
from third_party.loftr.src.loftr import LoFTR, default_cfg
class VizLoFTR(Viz):
def __init__(self, args):
super().__init__()
if type(args) == dict:
args = Namespace(**args)
self.match_threshold = args.match_threshold
# Load model
conf = dict(default_cfg)
conf['match_coarse']['thr'] = self.match_threshold
print(conf)
self.model = LoFTR(config=conf)
ckpt_dict = torch.load(args.ckpt)
self.model.load_state_dict(ckpt_dict['state_dict'])
self.model = self.model.eval().to(self.device)
# Name the method
# self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0]
self.name = 'LoFTR'
print(f'Initialize {self.name}')
def match_and_draw(self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True):
if measure_time:
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
self.model(data_dict)
if measure_time:
torch.cuda.synchronize()
end.record()
torch.cuda.synchronize()
self.time_stats.append(start.elapsed_time(end))
kpts0 = data_dict['mkpts0_f'].cpu().numpy()
kpts1 = data_dict['mkpts1_f'].cpu().numpy()
img_name0, img_name1 = list(zip(*data_dict['pair_names']))[0]
img0 = cv2.imread(os.path.join(root_dir, img_name0))
img1 = cv2.imread(os.path.join(root_dir, img_name1))
if str(data_dict["dataset_name"][0]).lower() == 'scannet':
img0 = cv2.resize(img0, (640, 480))
img1 = cv2.resize(img1, (640, 480))
if viz_matches:
saved_name = "_".join([img_name0.split('/')[-1].split('.')[0], img_name1.split('/')[-1].split('.')[0]])
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name))
if not os.path.exists(folder_matches):
os.makedirs(folder_matches)
path_to_save_matches = os.path.join(folder_matches, "{}.png".format(saved_name))
if ground_truth:
compute_symmetrical_epipolar_errors(data_dict) # compute epi_errs for each match
compute_pose_errors(data_dict) # compute R_errs, t_errs, pose_errs for each pair
epi_errors = data_dict['epi_errs'].cpu().numpy()
R_errors, t_errors = data_dict['R_errs'][0], data_dict['t_errs'][0]
self.draw_matches(kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches,
R_errs=R_errors, t_errs=t_errors)
rel_pair_names = list(zip(*data_dict['pair_names']))
bs = data_dict['image0'].size(0)
metrics = {
# to filter duplicate pairs caused by DistributedSampler
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
'epi_errs': [data_dict['epi_errs'][data_dict['m_bids'] == b].cpu().numpy() for b in range(bs)],
'R_errs': data_dict['R_errs'],
't_errs': data_dict['t_errs'],
'inliers': data_dict['inliers']}
self.eval_stats.append({'metrics': metrics})
else:
m_conf = 1 - data_dict["mconf"].cpu().numpy()
self.draw_matches(kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4)