Spaces:
Running
Running
from argparse import Namespace | |
import os | |
import torch | |
import cv2 | |
from .base import Viz | |
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors | |
from third_party.loftr.src.loftr import LoFTR, default_cfg | |
class VizLoFTR(Viz): | |
def __init__(self, args): | |
super().__init__() | |
if type(args) == dict: | |
args = Namespace(**args) | |
self.match_threshold = args.match_threshold | |
# Load model | |
conf = dict(default_cfg) | |
conf['match_coarse']['thr'] = self.match_threshold | |
print(conf) | |
self.model = LoFTR(config=conf) | |
ckpt_dict = torch.load(args.ckpt) | |
self.model.load_state_dict(ckpt_dict['state_dict']) | |
self.model = self.model.eval().to(self.device) | |
# Name the method | |
# self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0] | |
self.name = 'LoFTR' | |
print(f'Initialize {self.name}') | |
def match_and_draw(self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True): | |
if measure_time: | |
torch.cuda.synchronize() | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
start.record() | |
self.model(data_dict) | |
if measure_time: | |
torch.cuda.synchronize() | |
end.record() | |
torch.cuda.synchronize() | |
self.time_stats.append(start.elapsed_time(end)) | |
kpts0 = data_dict['mkpts0_f'].cpu().numpy() | |
kpts1 = data_dict['mkpts1_f'].cpu().numpy() | |
img_name0, img_name1 = list(zip(*data_dict['pair_names']))[0] | |
img0 = cv2.imread(os.path.join(root_dir, img_name0)) | |
img1 = cv2.imread(os.path.join(root_dir, img_name1)) | |
if str(data_dict["dataset_name"][0]).lower() == 'scannet': | |
img0 = cv2.resize(img0, (640, 480)) | |
img1 = cv2.resize(img1, (640, 480)) | |
if viz_matches: | |
saved_name = "_".join([img_name0.split('/')[-1].split('.')[0], img_name1.split('/')[-1].split('.')[0]]) | |
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) | |
if not os.path.exists(folder_matches): | |
os.makedirs(folder_matches) | |
path_to_save_matches = os.path.join(folder_matches, "{}.png".format(saved_name)) | |
if ground_truth: | |
compute_symmetrical_epipolar_errors(data_dict) # compute epi_errs for each match | |
compute_pose_errors(data_dict) # compute R_errs, t_errs, pose_errs for each pair | |
epi_errors = data_dict['epi_errs'].cpu().numpy() | |
R_errors, t_errors = data_dict['R_errs'][0], data_dict['t_errs'][0] | |
self.draw_matches(kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches, | |
R_errs=R_errors, t_errs=t_errors) | |
rel_pair_names = list(zip(*data_dict['pair_names'])) | |
bs = data_dict['image0'].size(0) | |
metrics = { | |
# to filter duplicate pairs caused by DistributedSampler | |
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)], | |
'epi_errs': [data_dict['epi_errs'][data_dict['m_bids'] == b].cpu().numpy() for b in range(bs)], | |
'R_errs': data_dict['R_errs'], | |
't_errs': data_dict['t_errs'], | |
'inliers': data_dict['inliers']} | |
self.eval_stats.append({'metrics': metrics}) | |
else: | |
m_conf = 1 - data_dict["mconf"].cpu().numpy() | |
self.draw_matches(kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4) | |