Spaces:
Running
Running
import argparse | |
import numpy as np | |
from PIL import Image | |
import torch | |
import math | |
from tqdm import tqdm | |
from os import path | |
# Kapture is a pivot file format, based on text and binary files, used to describe SfM (Structure From Motion) and more generally sensor-acquired data | |
# it can be installed with | |
# pip install kapture | |
# for more information check out https://github.com/naver/kapture | |
import kapture | |
from kapture.io.records import get_image_fullpath | |
from kapture.io.csv import kapture_from_dir, get_all_tar_handlers | |
from kapture.io.csv import get_feature_csv_fullpath, keypoints_to_file, descriptors_to_file | |
from kapture.io.features import get_keypoints_fullpath, keypoints_check_dir, image_keypoints_to_file | |
from kapture.io.features import get_descriptors_fullpath, descriptors_check_dir, image_descriptors_to_file | |
from lib.model_test import D2Net | |
from lib.utils import preprocess_image | |
from lib.pyramid import process_multiscale | |
# import imageio | |
# CUDA | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if use_cuda else "cpu") | |
# Argument parsing | |
parser = argparse.ArgumentParser(description='Feature extraction script') | |
parser.add_argument( | |
'--kapture-root', type=str, required=True, | |
help='path to kapture root directory' | |
) | |
parser.add_argument( | |
'--preprocessing', type=str, default='caffe', | |
help='image preprocessing (caffe or torch)' | |
) | |
parser.add_argument( | |
'--model_file', type=str, default='models/d2_tf.pth', | |
help='path to the full model' | |
) | |
parser.add_argument( | |
'--keypoints-type', type=str, default=None, | |
help='keypoint type_name, default is filename of model' | |
) | |
parser.add_argument( | |
'--descriptors-type', type=str, default=None, | |
help='descriptors type_name, default is filename of model' | |
) | |
parser.add_argument( | |
'--max_edge', type=int, default=1600, | |
help='maximum image size at network input' | |
) | |
parser.add_argument( | |
'--max_sum_edges', type=int, default=2800, | |
help='maximum sum of image sizes at network input' | |
) | |
parser.add_argument( | |
'--multiscale', dest='multiscale', action='store_true', | |
help='extract multiscale features' | |
) | |
parser.set_defaults(multiscale=False) | |
parser.add_argument( | |
'--no-relu', dest='use_relu', action='store_false', | |
help='remove ReLU after the dense feature extraction module' | |
) | |
parser.set_defaults(use_relu=True) | |
parser.add_argument("--max-keypoints", type=int, default=float("+inf"), | |
help='max number of keypoints save to disk') | |
args = parser.parse_args() | |
print(args) | |
with get_all_tar_handlers(args.kapture_root, | |
mode={kapture.Keypoints: 'a', | |
kapture.Descriptors: 'a', | |
kapture.GlobalFeatures: 'r', | |
kapture.Matches: 'r'}) as tar_handlers: | |
kdata = kapture_from_dir(args.kapture_root, | |
skip_list=[kapture.GlobalFeatures, | |
kapture.Matches, | |
kapture.Points3d, | |
kapture.Observations], | |
tar_handlers=tar_handlers) | |
if kdata.keypoints is None: | |
kdata.keypoints = {} | |
if kdata.descriptors is None: | |
kdata.descriptors = {} | |
assert kdata.records_camera is not None | |
image_list = [filename for _, _, filename in kapture.flatten(kdata.records_camera)] | |
if args.keypoints_type is None: | |
args.keypoints_type = path.splitext(path.basename(args.model_file))[0] | |
print(f'keypoints_type set to {args.keypoints_type}') | |
if args.descriptors_type is None: | |
args.descriptors_type = path.splitext(path.basename(args.model_file))[0] | |
print(f'descriptors_type set to {args.descriptors_type}') | |
if args.keypoints_type in kdata.keypoints and args.descriptors_type in kdata.descriptors: | |
image_list = [name | |
for name in image_list | |
if name not in kdata.keypoints[args.keypoints_type] or | |
name not in kdata.descriptors[args.descriptors_type]] | |
if len(image_list) == 0: | |
print('All features were already extracted') | |
exit(0) | |
else: | |
print(f'Extracting d2net features for {len(image_list)} images') | |
# Creating CNN model | |
model = D2Net( | |
model_file=args.model_file, | |
use_relu=args.use_relu, | |
use_cuda=use_cuda | |
) | |
if args.keypoints_type not in kdata.keypoints: | |
keypoints_dtype = None | |
keypoints_dsize = None | |
else: | |
keypoints_dtype = kdata.keypoints[args.keypoints_type].dtype | |
keypoints_dsize = kdata.keypoints[args.keypoints_type].dsize | |
if args.descriptors_type not in kdata.descriptors: | |
descriptors_dtype = None | |
descriptors_dsize = None | |
else: | |
descriptors_dtype = kdata.descriptors[args.descriptors_type].dtype | |
descriptors_dsize = kdata.descriptors[args.descriptors_type].dsize | |
# Process the files | |
for image_name in tqdm(image_list, total=len(image_list)): | |
img_path = get_image_fullpath(args.kapture_root, image_name) | |
image = Image.open(img_path).convert('RGB') | |
width, height = image.size | |
resized_image = image | |
resized_width = width | |
resized_height = height | |
max_edge = args.max_edge | |
max_sum_edges = args.max_sum_edges | |
if max(resized_width, resized_height) > max_edge: | |
scale_multiplier = max_edge / max(resized_width, resized_height) | |
resized_width = math.floor(resized_width * scale_multiplier) | |
resized_height = math.floor(resized_height * scale_multiplier) | |
resized_image = image.resize((resized_width, resized_height)) | |
if resized_width + resized_height > max_sum_edges: | |
scale_multiplier = max_sum_edges / (resized_width + resized_height) | |
resized_width = math.floor(resized_width * scale_multiplier) | |
resized_height = math.floor(resized_height * scale_multiplier) | |
resized_image = image.resize((resized_width, resized_height)) | |
fact_i = width / resized_width | |
fact_j = height / resized_height | |
resized_image = np.array(resized_image).astype('float') | |
input_image = preprocess_image( | |
resized_image, | |
preprocessing=args.preprocessing | |
) | |
with torch.no_grad(): | |
if args.multiscale: | |
keypoints, scores, descriptors = process_multiscale( | |
torch.tensor( | |
input_image[np.newaxis, :, :, :].astype(np.float32), | |
device=device | |
), | |
model | |
) | |
else: | |
keypoints, scores, descriptors = process_multiscale( | |
torch.tensor( | |
input_image[np.newaxis, :, :, :].astype(np.float32), | |
device=device | |
), | |
model, | |
scales=[1] | |
) | |
# Input image coordinates | |
keypoints[:, 0] *= fact_i | |
keypoints[:, 1] *= fact_j | |
# i, j -> u, v | |
keypoints = keypoints[:, [1, 0, 2]] | |
if args.max_keypoints != float("+inf"): | |
# keep the last (the highest) indexes | |
idx_keep = scores.argsort()[-min(len(keypoints), args.max_keypoints):] | |
keypoints = keypoints[idx_keep] | |
descriptors = descriptors[idx_keep] | |
if keypoints_dtype is None or descriptors_dtype is None: | |
keypoints_dtype = keypoints.dtype | |
descriptors_dtype = descriptors.dtype | |
keypoints_dsize = keypoints.shape[1] | |
descriptors_dsize = descriptors.shape[1] | |
kdata.keypoints[args.keypoints_type] = kapture.Keypoints('d2net', keypoints_dtype, keypoints_dsize) | |
kdata.descriptors[args.descriptors_type] = kapture.Descriptors('d2net', descriptors_dtype, | |
descriptors_dsize, | |
args.keypoints_type, 'L2') | |
keypoints_config_absolute_path = get_feature_csv_fullpath(kapture.Keypoints, | |
args.keypoints_type, | |
args.kapture_root) | |
descriptors_config_absolute_path = get_feature_csv_fullpath(kapture.Descriptors, | |
args.descriptors_type, | |
args.kapture_root) | |
keypoints_to_file(keypoints_config_absolute_path, kdata.keypoints[args.keypoints_type]) | |
descriptors_to_file(descriptors_config_absolute_path, kdata.descriptors[args.descriptors_type]) | |
else: | |
assert kdata.keypoints[args.keypoints_type].dtype == keypoints.dtype | |
assert kdata.descriptors[args.descriptors_type].dtype == descriptors.dtype | |
assert kdata.keypoints[args.keypoints_type].dsize == keypoints.shape[1] | |
assert kdata.descriptors[args.descriptors_type].dsize == descriptors.shape[1] | |
assert kdata.descriptors[args.descriptors_type].keypoints_type == args.keypoints_type | |
assert kdata.descriptors[args.descriptors_type].metric_type == 'L2' | |
keypoints_fullpath = get_keypoints_fullpath(args.keypoints_type, args.kapture_root, | |
image_name, tar_handlers) | |
print(f"Saving {keypoints.shape[0]} keypoints to {keypoints_fullpath}") | |
image_keypoints_to_file(keypoints_fullpath, keypoints) | |
kdata.keypoints[args.keypoints_type].add(image_name) | |
descriptors_fullpath = get_descriptors_fullpath(args.descriptors_type, args.kapture_root, | |
image_name, tar_handlers) | |
print(f"Saving {descriptors.shape[0]} descriptors to {descriptors_fullpath}") | |
image_descriptors_to_file(descriptors_fullpath, descriptors) | |
kdata.descriptors[args.descriptors_type].add(image_name) | |
if not keypoints_check_dir(kdata.keypoints[args.keypoints_type], args.keypoints_type, | |
args.kapture_root, tar_handlers) or \ | |
not descriptors_check_dir(kdata.descriptors[args.descriptors_type], args.descriptors_type, | |
args.kapture_root, tar_handlers): | |
print('local feature extraction ended successfully but not all files were saved') | |