Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
1.97 kB
import argparse
import imagesize
import os
import subprocess
parser = argparse.ArgumentParser(description='MegaDepth Undistortion')
parser.add_argument(
'--colmap_path', type=str, required=True,
help='path to colmap executable'
)
parser.add_argument(
'--base_path', type=str, required=True,
help='path to MegaDepth'
)
args = parser.parse_args()
sfm_path = os.path.join(
args.base_path, 'MegaDepth_v1_SfM'
)
base_depth_path = os.path.join(
args.base_path, 'phoenix/S6/zl548/MegaDepth_v1'
)
output_path = os.path.join(
args.base_path, 'Undistorted_SfM'
)
os.mkdir(output_path)
for scene_name in os.listdir(base_depth_path):
current_output_path = os.path.join(output_path, scene_name)
os.mkdir(current_output_path)
image_path = os.path.join(
base_depth_path, scene_name, 'dense0', 'imgs'
)
if not os.path.exists(image_path):
continue
# Find the maximum image size in scene.
max_image_size = 0
for image_name in os.listdir(image_path):
max_image_size = max(
max_image_size,
max(imagesize.get(os.path.join(image_path, image_name)))
)
# Undistort the images and update the reconstruction.
subprocess.call([
os.path.join(args.colmap_path, 'colmap'), 'image_undistorter',
'--image_path', os.path.join(sfm_path, scene_name, 'images'),
'--input_path', os.path.join(sfm_path, scene_name, 'sparse', 'manhattan', '0'),
'--output_path', current_output_path,
'--max_image_size', str(max_image_size)
])
# Transform the reconstruction to raw text format.
sparse_txt_path = os.path.join(current_output_path, 'sparse-txt')
os.mkdir(sparse_txt_path)
subprocess.call([
os.path.join(args.colmap_path, 'colmap'), 'model_converter',
'--input_path', os.path.join(current_output_path, 'sparse'),
'--output_path', sparse_txt_path,
'--output_type', 'TXT'
])