Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
3.39 kB
# Copyright 2020 Toyota Research Institute. All rights reserved.
import numpy as np
import torch
import torchvision.transforms as transforms
from tqdm import tqdm
from evaluation.descriptor_evaluation import (compute_homography,
compute_matching_score)
from evaluation.detector_evaluation import compute_repeatability
def evaluate_keypoint_net(data_loader, keypoint_net, output_shape=(320, 240), top_k=300):
"""Keypoint net evaluation script.
Parameters
----------
data_loader: torch.utils.data.DataLoader
Dataset loader.
keypoint_net: torch.nn.module
Keypoint network.
output_shape: tuple
Original image shape.
top_k: int
Number of keypoints to use to compute metrics, selected based on probability.
use_color: bool
Use color or grayscale images.
"""
keypoint_net.eval()
keypoint_net.training = False
conf_threshold = 0.0
localization_err, repeatability = [], []
correctness1, correctness3, correctness5, MScore = [], [], [], []
with torch.no_grad():
for i, sample in tqdm(enumerate(data_loader), desc="Evaluate point model"):
image = sample['image'].cuda()
warped_image = sample['warped_image'].cuda()
score_1, coord_1, desc1 = keypoint_net(image)
score_2, coord_2, desc2 = keypoint_net(warped_image)
B, _, Hc, Wc = desc1.shape
# Scores & Descriptors
score_1 = torch.cat([coord_1, score_1], dim=1).view(3, -1).t().cpu().numpy()
score_2 = torch.cat([coord_2, score_2], dim=1).view(3, -1).t().cpu().numpy()
desc1 = desc1.view(256, Hc, Wc).view(256, -1).t().cpu().numpy()
desc2 = desc2.view(256, Hc, Wc).view(256, -1).t().cpu().numpy()
# Filter based on confidence threshold
desc1 = desc1[score_1[:, 2] > conf_threshold, :]
desc2 = desc2[score_2[:, 2] > conf_threshold, :]
score_1 = score_1[score_1[:, 2] > conf_threshold, :]
score_2 = score_2[score_2[:, 2] > conf_threshold, :]
# Prepare data for eval
data = {'image': sample['image'].numpy().squeeze(),
'image_shape' : output_shape[::-1],
'warped_image': sample['warped_image'].numpy().squeeze(),
'homography': sample['homography'].squeeze().numpy(),
'prob': score_1,
'warped_prob': score_2,
'desc': desc1,
'warped_desc': desc2}
# Compute repeatabilty and localization error
_, _, rep, loc_err = compute_repeatability(data, keep_k_points=top_k, distance_thresh=3)
repeatability.append(rep)
localization_err.append(loc_err)
# Compute correctness
c1, c2, c3 = compute_homography(data, keep_k_points=top_k)
correctness1.append(c1)
correctness3.append(c2)
correctness5.append(c3)
# Compute matching score
mscore = compute_matching_score(data, keep_k_points=top_k)
MScore.append(mscore)
return np.mean(repeatability), np.mean(localization_err), \
np.mean(correctness1), np.mean(correctness3), np.mean(correctness5), np.mean(MScore)