Spaces:
Running
Running
# Copyright 2019-present NAVER Corp. | |
# CC BY-NC-SA 3.0 | |
# Available only for non-commercial use | |
import pdb | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class BaseNet (nn.Module): | |
""" Takes a list of images as input, and returns for each image: | |
- a pixelwise descriptor | |
- a pixelwise confidence | |
""" | |
def softmax(self, ux): | |
if ux.shape[1] == 1: | |
x = F.softplus(ux) | |
return x / (1 + x) # for sure in [0,1], much less plateaus than softmax | |
elif ux.shape[1] == 2: | |
return F.softmax(ux, dim=1)[:,1:2] | |
def normalize(self, x, ureliability, urepeatability): | |
return dict(descriptors = F.normalize(x, p=2, dim=1), | |
repeatability = self.softmax( urepeatability ), | |
reliability = self.softmax( ureliability )) | |
def forward_one(self, x): | |
raise NotImplementedError() | |
def forward(self, imgs, **kw): | |
res = [self.forward_one(img) for img in imgs] | |
# merge all dictionaries into one | |
res = {k:[r[k] for r in res if k in r] for k in {k for r in res for k in r}} | |
return dict(res, imgs=imgs, **kw) | |
class PatchNet (BaseNet): | |
""" Helper class to construct a fully-convolutional network that | |
extract a l2-normalized patch descriptor. | |
""" | |
def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False): | |
BaseNet.__init__(self) | |
self.inchan = inchan | |
self.curchan = inchan | |
self.dilated = dilated | |
self.dilation = dilation | |
self.bn = bn | |
self.bn_affine = bn_affine | |
self.ops = nn.ModuleList([]) | |
def _make_bn(self, outd): | |
return nn.BatchNorm2d(outd, affine=self.bn_affine) | |
def _add_conv(self, outd, k=3, stride=1, dilation=1, bn=True, relu=True, k_pool = 1, pool_type='max'): | |
# as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer | |
d = self.dilation * dilation | |
if self.dilated: | |
conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1) | |
self.dilation *= stride | |
else: | |
conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride) | |
self.ops.append( nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params) ) | |
if bn and self.bn: self.ops.append( self._make_bn(outd) ) | |
if relu: self.ops.append( nn.ReLU(inplace=True) ) | |
self.curchan = outd | |
if k_pool > 1: | |
if pool_type == 'avg': | |
self.ops.append(torch.nn.AvgPool2d(kernel_size=k_pool)) | |
elif pool_type == 'max': | |
self.ops.append(torch.nn.MaxPool2d(kernel_size=k_pool)) | |
else: | |
print(f"Error, unknown pooling type {pool_type}...") | |
def forward_one(self, x): | |
assert self.ops, "You need to add convolutions first" | |
for n,op in enumerate(self.ops): | |
x = op(x) | |
return self.normalize(x) | |
class L2_Net (PatchNet): | |
""" Compute a 128D descriptor for all overlapping 32x32 patches. | |
From the L2Net paper (CVPR'17). | |
""" | |
def __init__(self, dim=128, **kw ): | |
PatchNet.__init__(self, **kw) | |
add_conv = lambda n,**kw: self._add_conv((n*dim)//128,**kw) | |
add_conv(32) | |
add_conv(32) | |
add_conv(64, stride=2) | |
add_conv(64) | |
add_conv(128, stride=2) | |
add_conv(128) | |
add_conv(128, k=7, stride=8, bn=False, relu=False) | |
self.out_dim = dim | |
class Quad_L2Net (PatchNet): | |
""" Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs. | |
""" | |
def __init__(self, dim=128, mchan=4, relu22=False, **kw ): | |
PatchNet.__init__(self, **kw) | |
self._add_conv( 8*mchan) | |
self._add_conv( 8*mchan) | |
self._add_conv( 16*mchan, stride=2) | |
self._add_conv( 16*mchan) | |
self._add_conv( 32*mchan, stride=2) | |
self._add_conv( 32*mchan) | |
# replace last 8x8 convolution with 3 2x2 convolutions | |
self._add_conv( 32*mchan, k=2, stride=2, relu=relu22) | |
self._add_conv( 32*mchan, k=2, stride=2, relu=relu22) | |
self._add_conv(dim, k=2, stride=2, bn=False, relu=False) | |
self.out_dim = dim | |
class Quad_L2Net_ConfCFS (Quad_L2Net): | |
""" Same than Quad_L2Net, with 2 confidence maps for repeatability and reliability. | |
""" | |
def __init__(self, **kw ): | |
Quad_L2Net.__init__(self, **kw) | |
# reliability classifier | |
self.clf = nn.Conv2d(self.out_dim, 2, kernel_size=1) | |
# repeatability classifier: for some reasons it's a softplus, not a softmax! | |
# Why? I guess it's a mistake that was left unnoticed in the code for a long time... | |
self.sal = nn.Conv2d(self.out_dim, 1, kernel_size=1) | |
def forward_one(self, x): | |
assert self.ops, "You need to add convolutions first" | |
for op in self.ops: | |
x = op(x) | |
# compute the confidence maps | |
ureliability = self.clf(x**2) | |
urepeatability = self.sal(x**2) | |
return self.normalize(x, ureliability, urepeatability) | |
class Fast_Quad_L2Net (PatchNet): | |
""" Faster version of Quad l2 net, replacing one dilated conv with one pooling to diminish image resolution thus increase inference time | |
Dilation factors and pooling: | |
1,1,1, pool2, 1,1, 2,2, 4, 8, upsample2 | |
""" | |
def __init__(self, dim=128, mchan=4, relu22=False, downsample_factor=2, **kw ): | |
PatchNet.__init__(self, **kw) | |
self._add_conv( 8*mchan) | |
self._add_conv( 8*mchan) | |
self._add_conv( 16*mchan, k_pool = downsample_factor) # added avg pooling to decrease img resolution | |
self._add_conv( 16*mchan) | |
self._add_conv( 32*mchan, stride=2) | |
self._add_conv( 32*mchan) | |
# replace last 8x8 convolution with 3 2x2 convolutions | |
self._add_conv( 32*mchan, k=2, stride=2, relu=relu22) | |
self._add_conv( 32*mchan, k=2, stride=2, relu=relu22) | |
self._add_conv(dim, k=2, stride=2, bn=False, relu=False) | |
# Go back to initial image resolution with upsampling | |
self.ops.append(torch.nn.Upsample(scale_factor=downsample_factor, mode='bilinear', align_corners=False)) | |
self.out_dim = dim | |
class Fast_Quad_L2Net_ConfCFS (Fast_Quad_L2Net): | |
""" Fast r2d2 architecture | |
""" | |
def __init__(self, **kw ): | |
Fast_Quad_L2Net.__init__(self, **kw) | |
# reliability classifier | |
self.clf = nn.Conv2d(self.out_dim, 2, kernel_size=1) | |
# repeatability classifier: for some reasons it's a softplus, not a softmax! | |
# Why? I guess it's a mistake that was left unnoticed in the code for a long time... | |
self.sal = nn.Conv2d(self.out_dim, 1, kernel_size=1) | |
def forward_one(self, x): | |
assert self.ops, "You need to add convolutions first" | |
for op in self.ops: | |
x = op(x) | |
# compute the confidence maps | |
ureliability = self.clf(x**2) | |
urepeatability = self.sal(x**2) | |
return self.normalize(x, ureliability, urepeatability) |