Spaces:
Running
Running
# Copyright 2019-present NAVER Corp. | |
# CC BY-NC-SA 3.0 | |
# Available only for non-commercial use | |
import pdb | |
import numpy as np | |
from PIL import Image, ImageOps | |
import torchvision.transforms as tvf | |
import random | |
from math import ceil | |
from . import transforms_tools as F | |
''' | |
Example command to try out some transformation chain: | |
python -m tools.transforms --trfs "Scale(384), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1), RandomRotation(10), RandomTilting(0.5, 'all'), RandomScale(240,320), RandomCrop(224)" | |
''' | |
def instanciate_transformation(cmd_line): | |
''' Create a sequence of transformations. | |
cmd_line: (str) | |
Comma-separated list of transformations. | |
Ex: "Rotate(10), Scale(256)" | |
''' | |
if not isinstance(cmd_line, str): | |
return cmd_line # already instanciated | |
cmd_line = "tvf.Compose([%s])" % cmd_line | |
try: | |
return eval(cmd_line) | |
except Exception as e: | |
print("Cannot interpret this transform list: %s\nReason: %s" % (cmd_line, e)) | |
class Scale (object): | |
""" Rescale the input PIL.Image to a given size. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
The smallest dimension of the resulting image will be = size. | |
if largest == True: same behaviour for the largest dimension. | |
if not can_upscale: don't upscale | |
if not can_downscale: don't downscale | |
""" | |
def __init__(self, size, interpolation=Image.BILINEAR, largest=False, | |
can_upscale=True, can_downscale=True): | |
assert isinstance(size, int) or (len(size) == 2) | |
self.size = size | |
self.interpolation = interpolation | |
self.largest = largest | |
self.can_upscale = can_upscale | |
self.can_downscale = can_downscale | |
def __repr__(self): | |
fmt_str = "RandomScale(%s" % str(self.size) | |
if self.largest: fmt_str += ', largest=True' | |
if not self.can_upscale: fmt_str += ', can_upscale=False' | |
if not self.can_downscale: fmt_str += ', can_downscale=False' | |
return fmt_str+')' | |
def get_params(self, imsize): | |
w,h = imsize | |
if isinstance(self.size, int): | |
cmp = lambda a,b: (a>=b) if self.largest else (a<=b) | |
if (cmp(w, h) and w == self.size) or (cmp(h, w) and h == self.size): | |
ow, oh = w, h | |
elif cmp(w, h): | |
ow = self.size | |
oh = int(self.size * h / w) | |
else: | |
oh = self.size | |
ow = int(self.size * w / h) | |
else: | |
ow, oh = self.size | |
return ow, oh | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
w, h = img.size | |
size2 = ow, oh = self.get_params(img.size) | |
if size2 != img.size: | |
a1, a2 = img.size, size2 | |
if (self.can_upscale and min(a1) < min(a2)) or (self.can_downscale and min(a1) > min(a2)): | |
img = img.resize(size2, self.interpolation) | |
return F.update_img_and_labels(inp, img, persp=(ow/w,0,0,0,oh/h,0,0,0)) | |
class RandomScale (Scale): | |
"""Rescale the input PIL.Image to a random size. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
min_size (int): min size of the smaller edge of the picture. | |
max_size (int): max size of the smaller edge of the picture. | |
ar (float or tuple): | |
max change of aspect ratio (width/height). | |
interpolation (int, optional): Desired interpolation. Default is | |
``PIL.Image.BILINEAR`` | |
""" | |
def __init__(self, min_size, max_size, ar=1, | |
can_upscale=False, can_downscale=True, interpolation=Image.BILINEAR): | |
Scale.__init__(self, 0, can_upscale=can_upscale, can_downscale=can_downscale, interpolation=interpolation) | |
assert type(min_size) == type(max_size), 'min_size and max_size can only be 2 ints or 2 floats' | |
assert isinstance(min_size, int) and min_size >= 1 or isinstance(min_size, float) and min_size>0 | |
assert isinstance(max_size, (int,float)) and min_size <= max_size | |
self.min_size = min_size | |
self.max_size = max_size | |
if type(ar) in (float,int): ar = (min(1/ar,ar),max(1/ar,ar)) | |
assert 0.2 < ar[0] <= ar[1] < 5 | |
self.ar = ar | |
def get_params(self, imsize): | |
w,h = imsize | |
if isinstance(self.min_size, float): | |
min_size = int(self.min_size*min(w,h) + 0.5) | |
if isinstance(self.max_size, float): | |
max_size = int(self.max_size*min(w,h) + 0.5) | |
if isinstance(self.min_size, int): | |
min_size = self.min_size | |
if isinstance(self.max_size, int): | |
max_size = self.max_size | |
if not self.can_upscale: | |
max_size = min(max_size,min(w,h)) | |
size = int(0.5 + F.rand_log_uniform(min_size,max_size)) | |
ar = F.rand_log_uniform(*self.ar) # change of aspect ratio | |
if w < h: # image is taller | |
ow = size | |
oh = int(0.5 + size * h / w / ar) | |
if oh < min_size: | |
ow,oh = int(0.5 + ow*float(min_size)/oh),min_size | |
else: # image is wider | |
oh = size | |
ow = int(0.5 + size * w / h * ar) | |
if ow < min_size: | |
ow,oh = min_size,int(0.5 + oh*float(min_size)/ow) | |
assert ow >= min_size, 'image too small (width=%d < min_size=%d)' % (ow, min_size) | |
assert oh >= min_size, 'image too small (height=%d < min_size=%d)' % (oh, min_size) | |
return ow, oh | |
class RandomCrop (object): | |
"""Crop the given PIL Image at a random location. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
size (sequence or int): Desired output size of the crop. If size is an | |
int instead of sequence like (h, w), a square crop (size, size) is | |
made. | |
padding (int or sequence, optional): Optional padding on each border | |
of the image. Default is 0, i.e no padding. If a sequence of length | |
4 is provided, it is used to pad left, top, right, bottom borders | |
respectively. | |
""" | |
def __init__(self, size, padding=0): | |
if isinstance(size, int): | |
self.size = (int(size), int(size)) | |
else: | |
self.size = size | |
self.padding = padding | |
def __repr__(self): | |
return "RandomCrop(%s)" % str(self.size) | |
def get_params(img, output_size): | |
w, h = img.size | |
th, tw = output_size | |
assert h >= th and w >= tw, "Image of %dx%d is too small for crop %dx%d" % (w,h,tw,th) | |
y = np.random.randint(0, h - th) if h > th else 0 | |
x = np.random.randint(0, w - tw) if w > tw else 0 | |
return x, y, tw, th | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
padl = padt = 0 | |
if self.padding: | |
if F.is_pil_image(img): | |
img = ImageOps.expand(img, border=self.padding, fill=0) | |
else: | |
assert isinstance(img, F.DummyImg) | |
img = img.expand(border=self.padding) | |
if isinstance(self.padding, int): | |
padl = padt = self.padding | |
else: | |
padl, padt = self.padding[0:2] | |
i, j, tw, th = self.get_params(img, self.size) | |
img = img.crop((i, j, i+tw, j+th)) | |
return F.update_img_and_labels(inp, img, persp=(1,0,padl-i,0,1,padt-j,0,0)) | |
class CenterCrop (RandomCrop): | |
"""Crops the given PIL Image at the center. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
size (sequence or int): Desired output size of the crop. If size is an | |
int instead of sequence like (h, w), a square crop (size, size) is | |
made. | |
""" | |
def get_params(img, output_size): | |
w, h = img.size | |
th, tw = output_size | |
y = int(0.5 +((h - th) / 2.)) | |
x = int(0.5 +((w - tw) / 2.)) | |
return x, y, tw, th | |
class RandomRotation(object): | |
"""Rescale the input PIL.Image to a random size. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
degrees (float): | |
rotation angle. | |
interpolation (int, optional): Desired interpolation. Default is | |
``PIL.Image.BILINEAR`` | |
""" | |
def __init__(self, degrees, interpolation=Image.BILINEAR): | |
self.degrees = degrees | |
self.interpolation = interpolation | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
w, h = img.size | |
angle = np.random.uniform(-self.degrees, self.degrees) | |
img = img.rotate(angle, resample=self.interpolation) | |
w2, h2 = img.size | |
trf = F.translate(-w/2,-h/2) | |
trf = F.persp_mul(trf, F.rotate(-angle * np.pi/180)) | |
trf = F.persp_mul(trf, F.translate(w2/2,h2/2)) | |
return F.update_img_and_labels(inp, img, persp=trf) | |
class RandomTilting(object): | |
"""Apply a random tilting (left, right, up, down) to the input PIL.Image | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
maginitude (float): | |
maximum magnitude of the random skew (value between 0 and 1) | |
directions (string): | |
tilting directions allowed (all, left, right, up, down) | |
examples: "all", "left,right", "up-down-right" | |
""" | |
def __init__(self, magnitude, directions='all'): | |
self.magnitude = magnitude | |
self.directions = directions.lower().replace(',',' ').replace('-',' ') | |
def __repr__(self): | |
return "RandomTilt(%g, '%s')" % (self.magnitude,self.directions) | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
w, h = img.size | |
x1,y1,x2,y2 = 0,0,h,w | |
original_plane = [(y1, x1), (y2, x1), (y2, x2), (y1, x2)] | |
max_skew_amount = max(w, h) | |
max_skew_amount = int(ceil(max_skew_amount * self.magnitude)) | |
skew_amount = random.randint(1, max_skew_amount) | |
if self.directions == 'all': | |
choices = [0,1,2,3] | |
else: | |
dirs = ['left', 'right', 'up', 'down'] | |
choices = [] | |
for d in self.directions.split(): | |
try: | |
choices.append(dirs.index(d)) | |
except: | |
raise ValueError('Tilting direction %s not recognized' % d) | |
skew_direction = random.choice(choices) | |
# print('randomtitlting: ', skew_amount, skew_direction) # to debug random | |
if skew_direction == 0: | |
# Left Tilt | |
new_plane = [(y1, x1 - skew_amount), # Top Left | |
(y2, x1), # Top Right | |
(y2, x2), # Bottom Right | |
(y1, x2 + skew_amount)] # Bottom Left | |
elif skew_direction == 1: | |
# Right Tilt | |
new_plane = [(y1, x1), # Top Left | |
(y2, x1 - skew_amount), # Top Right | |
(y2, x2 + skew_amount), # Bottom Right | |
(y1, x2)] # Bottom Left | |
elif skew_direction == 2: | |
# Forward Tilt | |
new_plane = [(y1 - skew_amount, x1), # Top Left | |
(y2 + skew_amount, x1), # Top Right | |
(y2, x2), # Bottom Right | |
(y1, x2)] # Bottom Left | |
elif skew_direction == 3: | |
# Backward Tilt | |
new_plane = [(y1, x1), # Top Left | |
(y2, x1), # Top Right | |
(y2 + skew_amount, x2), # Bottom Right | |
(y1 - skew_amount, x2)] # Bottom Left | |
# To calculate the coefficients required by PIL for the perspective skew, | |
# see the following Stack Overflow discussion: https://goo.gl/sSgJdj | |
matrix = [] | |
for p1, p2 in zip(new_plane, original_plane): | |
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) | |
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) | |
A = np.matrix(matrix, dtype=np.float) | |
B = np.array(original_plane).reshape(8) | |
homography = np.dot(np.linalg.pinv(A), B) | |
homography = tuple(np.array(homography).reshape(8)) | |
#print(homography) | |
img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) | |
homography = np.linalg.pinv(np.float32(homography+(1,)).reshape(3,3)).ravel()[:8] | |
return F.update_img_and_labels(inp, img, persp=tuple(homography)) | |
RandomTilt = RandomTilting # redefinition | |
class Tilt(object): | |
"""Apply a known tilting to an image | |
""" | |
def __init__(self, *homography): | |
assert len(homography) == 8 | |
self.homography = homography | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
homography = self.homography | |
#print(homography) | |
img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) | |
homography = np.linalg.pinv(np.float32(homography+(1,)).reshape(3,3)).ravel()[:8] | |
return F.update_img_and_labels(inp, img, persp=tuple(homography)) | |
class StillTransform (object): | |
""" Takes and return an image, without changing its shape or geometry. | |
""" | |
def _transform(self, img): | |
raise NotImplementedError() | |
def __call__(self, inp): | |
img = F.grab_img(inp) | |
# transform the image (size should not change) | |
try: | |
img = self._transform(img) | |
except TypeError: | |
pass | |
return F.update_img_and_labels(inp, img, persp=(1,0,0,0,1,0,0,0)) | |
class PixelNoise (StillTransform): | |
""" Takes an image, and add random white noise. | |
""" | |
def __init__(self, ampl=20): | |
StillTransform.__init__(self) | |
assert 0 <= ampl < 255 | |
self.ampl = ampl | |
def __repr__(self): | |
return "PixelNoise(%g)" % self.ampl | |
def _transform(self, img): | |
img = np.float32(img) | |
img += np.random.uniform(0.5-self.ampl/2, 0.5+self.ampl/2, size=img.shape) | |
return Image.fromarray(np.uint8(img.clip(0,255))) | |
class ColorJitter (StillTransform): | |
"""Randomly change the brightness, contrast and saturation of an image. | |
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py | |
Args: | |
brightness (float): How much to jitter brightness. brightness_factor | |
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. | |
contrast (float): How much to jitter contrast. contrast_factor | |
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. | |
saturation (float): How much to jitter saturation. saturation_factor | |
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. | |
hue(float): How much to jitter hue. hue_factor is chosen uniformly from | |
[-hue, hue]. Should be >=0 and <= 0.5. | |
""" | |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): | |
self.brightness = brightness | |
self.contrast = contrast | |
self.saturation = saturation | |
self.hue = hue | |
def __repr__(self): | |
return "ColorJitter(%g,%g,%g,%g)" % ( | |
self.brightness, self.contrast, self.saturation, self.hue) | |
def get_params(brightness, contrast, saturation, hue): | |
"""Get a randomized transform to be applied on image. | |
Arguments are same as that of __init__. | |
Returns: | |
Transform which randomly adjusts brightness, contrast and | |
saturation in a random order. | |
""" | |
transforms = [] | |
if brightness > 0: | |
brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness) | |
transforms.append(tvf.Lambda(lambda img: F.adjust_brightness(img, brightness_factor))) | |
if contrast > 0: | |
contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast) | |
transforms.append(tvf.Lambda(lambda img: F.adjust_contrast(img, contrast_factor))) | |
if saturation > 0: | |
saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation) | |
transforms.append(tvf.Lambda(lambda img: F.adjust_saturation(img, saturation_factor))) | |
if hue > 0: | |
hue_factor = np.random.uniform(-hue, hue) | |
transforms.append(tvf.Lambda(lambda img: F.adjust_hue(img, hue_factor))) | |
# print('colorjitter: ', brightness_factor, contrast_factor, saturation_factor, hue_factor) # to debug random seed | |
np.random.shuffle(transforms) | |
transform = tvf.Compose(transforms) | |
return transform | |
def _transform(self, img): | |
transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) | |
return transform(img) | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser("Script to try out and visualize transformations") | |
parser.add_argument('--img', type=str, default='imgs/test.png', help='input image') | |
parser.add_argument('--trfs', type=str, required=True, help='list of transformations') | |
parser.add_argument('--layout', type=int, nargs=2, default=(3,3), help='nb of rows,cols') | |
args = parser.parse_args() | |
import os | |
args.img = args.img.replace('$HERE',os.path.dirname(__file__)) | |
img = Image.open(args.img) | |
img = dict(img=img) | |
trfs = instanciate_transformation(args.trfs) | |
from matplotlib import pyplot as pl | |
pl.ion() | |
pl.subplots_adjust(0,0,1,1) | |
nr,nc = args.layout | |
while True: | |
for j in range(nr): | |
for i in range(nc): | |
pl.subplot(nr,nc,i+j*nc+1) | |
if i==j==0: | |
img2 = img | |
else: | |
img2 = trfs(img.copy()) | |
if isinstance(img2, dict): | |
img2 = img2['img'] | |
pl.imshow(img2) | |
pl.xlabel("%d x %d" % img2.size) | |
pl.xticks(()) | |
pl.yticks(()) | |
pdb.set_trace() | |