Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
5.65 kB
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
import numpy as np
import matplotlib.pyplot as pl
def make_colorwheel():
'''
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
'''
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_compute_color(u, v, convert_to_bgr=False):
'''
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param u: np.ndarray, input horizontal flow
:param v: np.ndarray, input vertical flow
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
:return:
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
'''
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range?
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False):
'''
Expects a two dimensional flow image of shape [H,W,2]
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param flow_uv: np.ndarray of shape [H,W,2]
:param clip_flow: float, maximum clipping value for flow
:return:
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
'''
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_compute_color(u, v, convert_to_bgr)
def show_flow( img0, img1, flow, mask=None ):
img0 = np.asarray(img0)
img1 = np.asarray(img1)
if mask is None: mask = 1
mask = np.asarray(mask)
if mask.ndim == 2: mask = mask[:,:,None]
assert flow.ndim == 3
assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2
def noticks():
pl.xticks([])
pl.yticks([])
fig = pl.figure("showing correspondences")
ax1 = pl.subplot(221)
ax1.numaxis = 0
pl.imshow(img0*mask)
noticks()
ax2 = pl.subplot(222)
ax2.numaxis = 1
pl.imshow(img1)
noticks()
ax = pl.subplot(212)
ax.numaxis = 0
flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow))
pl.imshow(flow_img * mask)
noticks()
pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02)
def motion_notify_callback(event):
if event.inaxes is None: return
x,y = event.xdata, event.ydata
ax1.lines = []
ax2.lines = []
try:
x,y = int(x+0.5), int(y+0.5)
ax1.plot(x,y,'+',ms=10,mew=2,color='blue',scalex=False,scaley=False)
x,y = flow[y,x] + (x,y)
ax2.plot(x,y,'+',ms=10,mew=2,color='red',scalex=False,scaley=False)
# we redraw only the concerned axes
renderer = fig.canvas.get_renderer()
ax1.draw(renderer)
ax2.draw(renderer)
fig.canvas.blit(ax1.bbox)
fig.canvas.blit(ax2.bbox)
except IndexError:
return
cid_move = fig.canvas.mpl_connect('motion_notify_event',motion_notify_callback)
print("Move your mouse over the images to show matches (ctrl-C to quit)")
pl.show()