Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class SuperpointDecoder(nn.Module): | |
"""Junction decoder based on the SuperPoint architecture.""" | |
def __init__(self, input_feat_dim=128, backbone_name="lcnn"): | |
super(SuperpointDecoder, self).__init__() | |
self.relu = torch.nn.ReLU(inplace=True) | |
# Perform strided convolution when using lcnn backbone. | |
if backbone_name == "lcnn": | |
self.convPa = torch.nn.Conv2d( | |
input_feat_dim, 256, kernel_size=3, stride=2, padding=1 | |
) | |
elif backbone_name == "superpoint": | |
self.convPa = torch.nn.Conv2d( | |
input_feat_dim, 256, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
raise ValueError("[Error] Unknown backbone option.") | |
self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0) | |
def forward(self, input_features): | |
feat = self.relu(self.convPa(input_features)) | |
semi = self.convPb(feat) | |
return semi | |