Spaces:
Running
Running
from math import log | |
from loguru import logger | |
import torch | |
from einops import repeat | |
from kornia.utils import create_meshgrid | |
from .geometry import warp_kpts | |
############## β Coarse-Level supervision β ############## | |
def mask_pts_at_padded_regions(grid_pt, mask): | |
"""For megadepth dataset, zero-padding exists in images""" | |
mask = repeat(mask, "n h w -> n (h w) c", c=2) | |
grid_pt[~mask.bool()] = 0 | |
return grid_pt | |
def spvs_coarse(data, config): | |
""" | |
Update: | |
data (dict): { | |
"conf_matrix_gt": [N, hw0, hw1], | |
'spv_b_ids': [M] | |
'spv_i_ids': [M] | |
'spv_j_ids': [M] | |
'spv_w_pt0_i': [N, hw0, 2], in original image resolution | |
'spv_pt1_i': [N, hw1, 2], in original image resolution | |
} | |
NOTE: | |
- for scannet dataset, there're 3 kinds of resolution {i, c, f} | |
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f} | |
""" | |
# 1. misc | |
device = data["image0"].device | |
N, _, H0, W0 = data["image0"].shape | |
_, _, H1, W1 = data["image1"].shape | |
scale = config["MODEL"]["RESOLUTION"][0] | |
scale0 = scale * data["scale0"][:, None] if "scale0" in data else scale | |
scale1 = scale * data["scale1"][:, None] if "scale0" in data else scale | |
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) | |
# 2. warp grids | |
# create kpts in meshgrid and resize them to image resolution | |
grid_pt0_c = ( | |
create_meshgrid(h0, w0, False, device).reshape(1, h0 * w0, 2).repeat(N, 1, 1) | |
) # [N, hw, 2] | |
grid_pt0_i = scale0 * grid_pt0_c | |
grid_pt1_c = ( | |
create_meshgrid(h1, w1, False, device).reshape(1, h1 * w1, 2).repeat(N, 1, 1) | |
) | |
grid_pt1_i = scale1 * grid_pt1_c | |
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt | |
if "mask0" in data: | |
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data["mask0"]) | |
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data["mask1"]) | |
# warp kpts bi-directionally and resize them to coarse-level resolution | |
# (no depth consistency check, since it leads to worse results experimentally) | |
# (unhandled edge case: points with 0-depth will be warped to the left-up corner) | |
_, w_pt0_i = warp_kpts( | |
grid_pt0_i, | |
data["depth0"], | |
data["depth1"], | |
data["T_0to1"], | |
data["K0"], | |
data["K1"], | |
) | |
_, w_pt1_i = warp_kpts( | |
grid_pt1_i, | |
data["depth1"], | |
data["depth0"], | |
data["T_1to0"], | |
data["K1"], | |
data["K0"], | |
) | |
w_pt0_c = w_pt0_i / scale1 | |
w_pt1_c = w_pt1_i / scale0 | |
# 3. check if mutual nearest neighbor | |
w_pt0_c_round = w_pt0_c[:, :, :].round().long() | |
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1 | |
w_pt1_c_round = w_pt1_c[:, :, :].round().long() | |
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0 | |
# corner case: out of boundary | |
def out_bound_mask(pt, w, h): | |
return ( | |
(pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) | |
) | |
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0 | |
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0 | |
loop_back = torch.stack( | |
[nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0 | |
) | |
correct_0to1 = loop_back == torch.arange(h0 * w0, device=device)[None].repeat(N, 1) | |
correct_0to1[:, 0] = False # ignore the top-left corner | |
# 4. construct a gt conf_matrix | |
conf_matrix_gt = torch.zeros(N, h0 * w0, h1 * w1, device=device) | |
b_ids, i_ids = torch.where(correct_0to1 != 0) | |
j_ids = nearest_index1[b_ids, i_ids] | |
conf_matrix_gt[b_ids, i_ids, j_ids] = 1 | |
data.update({"conf_matrix_gt": conf_matrix_gt}) | |
# 5. save coarse matches(gt) for training fine level | |
if len(b_ids) == 0: | |
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}") | |
# this won't affect fine-level loss calculation | |
b_ids = torch.tensor([0], device=device) | |
i_ids = torch.tensor([0], device=device) | |
j_ids = torch.tensor([0], device=device) | |
data.update({"spv_b_ids": b_ids, "spv_i_ids": i_ids, "spv_j_ids": j_ids}) | |
# 6. save intermediate results (for fast fine-level computation) | |
data.update({"spv_w_pt0_i": w_pt0_i, "spv_pt1_i": grid_pt1_i}) | |
def compute_supervision_coarse(data, config): | |
assert ( | |
len(set(data["dataset_name"])) == 1 | |
), "Do not support mixed datasets training!" | |
data_source = data["dataset_name"][0] | |
if data_source.lower() in ["scannet", "megadepth"]: | |
spvs_coarse(data, config) | |
else: | |
raise ValueError(f"Unknown data source: {data_source}") | |
############## β Fine-Level supervision β ############## | |
def spvs_fine(data, config): | |
""" | |
Update: | |
data (dict):{ | |
"expec_f_gt": [M, 2]} | |
""" | |
# 1. misc | |
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i') | |
w_pt0_i, pt1_i = data["spv_w_pt0_i"], data["spv_pt1_i"] | |
scale = config["MODEL"]["RESOLUTION"][1] | |
radius = config["MODEL"]["FINE_WINDOW_SIZE"] // 2 | |
# 2. get coarse prediction | |
b_ids, i_ids, j_ids = data["b_ids"], data["i_ids"], data["j_ids"] | |
# 3. compute gt | |
scale = scale * data["scale1"][b_ids] if "scale0" in data else scale | |
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later | |
expec_f_gt = ( | |
(w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius | |
) # [M, 2] | |
data.update({"expec_f_gt": expec_f_gt}) | |
def compute_supervision_fine(data, config): | |
data_source = data["dataset_name"][0] | |
if data_source.lower() in ["scannet", "megadepth"]: | |
spvs_fine(data, config) | |
else: | |
raise NotImplementedError | |