Spaces:
Running
Running
from argparse import Namespace | |
import os, sys | |
import torch | |
import cv2 | |
from pathlib import Path | |
from .base import Viz | |
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors | |
patch2pix_path = Path(__file__).parent / "../../third_party/patch2pix" | |
sys.path.append(str(patch2pix_path)) | |
from third_party.patch2pix.utils.eval.model_helper import load_model, estimate_matches | |
class VizPatch2Pix(Viz): | |
def __init__(self, args): | |
super().__init__() | |
if type(args) == dict: | |
args = Namespace(**args) | |
self.imsize = args.imsize | |
self.match_threshold = args.match_threshold | |
self.ksize = args.ksize | |
self.model = load_model(args.ckpt, method="patch2pix") | |
self.name = "Patch2Pix" | |
print(f"Initialize {self.name} with image size {self.imsize}") | |
def match_and_draw( | |
self, | |
data_dict, | |
root_dir=None, | |
ground_truth=False, | |
measure_time=False, | |
viz_matches=True, | |
): | |
img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] | |
path_img0 = os.path.join(root_dir, img_name0) | |
path_img1 = os.path.join(root_dir, img_name1) | |
img0, img1 = cv2.imread(path_img0), cv2.imread(path_img1) | |
return_m_upscale = True | |
if str(data_dict["dataset_name"][0]).lower() == "scannet": | |
# self.imsize = 640 | |
img0 = cv2.resize(img0, tuple(self.imsize)) # (640, 480)) | |
img1 = cv2.resize(img1, tuple(self.imsize)) # (640, 480)) | |
return_m_upscale = False | |
outputs = estimate_matches( | |
self.model, | |
path_img0, | |
path_img1, | |
ksize=self.ksize, | |
io_thres=self.match_threshold, | |
eval_type="fine", | |
imsize=self.imsize, | |
return_upscale=return_m_upscale, | |
measure_time=measure_time, | |
) | |
if measure_time: | |
self.time_stats.append(outputs[-1]) | |
matches, mconf = outputs[0], outputs[1] | |
kpts0 = matches[:, :2] | |
kpts1 = matches[:, 2:4] | |
if viz_matches: | |
saved_name = "_".join( | |
[ | |
img_name0.split("/")[-1].split(".")[0], | |
img_name1.split("/")[-1].split(".")[0], | |
] | |
) | |
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) | |
if not os.path.exists(folder_matches): | |
os.makedirs(folder_matches) | |
path_to_save_matches = os.path.join( | |
folder_matches, "{}.png".format(saved_name) | |
) | |
if ground_truth: | |
data_dict["mkpts0_f"] = ( | |
torch.from_numpy(matches[:, :2]).float().to(self.device) | |
) | |
data_dict["mkpts1_f"] = ( | |
torch.from_numpy(matches[:, 2:4]).float().to(self.device) | |
) | |
data_dict["m_bids"] = torch.zeros( | |
matches.shape[0], device=self.device, dtype=torch.float32 | |
) | |
compute_symmetrical_epipolar_errors( | |
data_dict | |
) # compute epi_errs for each match | |
compute_pose_errors( | |
data_dict | |
) # compute R_errs, t_errs, pose_errs for each pair | |
epi_errors = data_dict["epi_errs"].cpu().numpy() | |
R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] | |
self.draw_matches( | |
kpts0, | |
kpts1, | |
img0, | |
img1, | |
epi_errors, | |
path=path_to_save_matches, | |
R_errs=R_errors, | |
t_errs=t_errors, | |
) | |
rel_pair_names = list(zip(*data_dict["pair_names"])) | |
bs = data_dict["image0"].size(0) | |
metrics = { | |
# to filter duplicate pairs caused by DistributedSampler | |
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], | |
"epi_errs": [ | |
data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() | |
for b in range(bs) | |
], | |
"R_errs": data_dict["R_errs"], | |
"t_errs": data_dict["t_errs"], | |
"inliers": data_dict["inliers"], | |
} | |
self.eval_stats.append({"metrics": metrics}) | |
else: | |
m_conf = 1 - mconf | |
self.draw_matches( | |
kpts0, | |
kpts1, | |
img0, | |
img1, | |
m_conf, | |
path=path_to_save_matches, | |
conf_thr=0.4, | |
) | |