Vincentqyw
fix: roma
358ab8f
raw
history blame
4.07 kB
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import scipy
import scipy.io
import scipy.misc
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
# Argument parsing
parser = argparse.ArgumentParser(description="Feature extraction script")
parser.add_argument(
"--image_list_file",
type=str,
required=True,
help="path to a file containing a list of images to process",
)
parser.add_argument(
"--preprocessing",
type=str,
default="caffe",
help="image preprocessing (caffe or torch)",
)
parser.add_argument(
"--model_file", type=str, default="models/d2_tf.pth", help="path to the full model"
)
parser.add_argument(
"--max_edge", type=int, default=1600, help="maximum image size at network input"
)
parser.add_argument(
"--max_sum_edges",
type=int,
default=2800,
help="maximum sum of image sizes at network input",
)
parser.add_argument(
"--output_extension", type=str, default=".d2-net", help="extension for the output"
)
parser.add_argument(
"--output_type", type=str, default="npz", help="output file type (npz or mat)"
)
parser.add_argument(
"--multiscale",
dest="multiscale",
action="store_true",
help="extract multiscale features",
)
parser.set_defaults(multiscale=False)
parser.add_argument(
"--no-relu",
dest="use_relu",
action="store_false",
help="remove ReLU after the dense feature extraction module",
)
parser.set_defaults(use_relu=True)
args = parser.parse_args()
print(args)
# Creating CNN model
model = D2Net(model_file=args.model_file, use_relu=args.use_relu, use_cuda=use_cuda)
# Process the file
with open(args.image_list_file, "r") as f:
lines = f.readlines()
for line in tqdm(lines, total=len(lines)):
path = line.strip()
image = imageio.imread(path)
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)
# TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize.
resized_image = image
if max(resized_image.shape) > args.max_edge:
resized_image = scipy.misc.imresize(
resized_image, args.max_edge / max(resized_image.shape)
).astype("float")
if sum(resized_image.shape[:2]) > args.max_sum_edges:
resized_image = scipy.misc.imresize(
resized_image, args.max_sum_edges / sum(resized_image.shape[:2])
).astype("float")
fact_i = image.shape[0] / resized_image.shape[0]
fact_j = image.shape[1] / resized_image.shape[1]
input_image = preprocess_image(resized_image, preprocessing=args.preprocessing)
with torch.no_grad():
if args.multiscale:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32), device=device
),
model,
)
else:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32), device=device
),
model,
scales=[1],
)
# Input image coordinates
keypoints[:, 0] *= fact_i
keypoints[:, 1] *= fact_j
# i, j -> u, v
keypoints = keypoints[:, [1, 0, 2]]
if args.output_type == "npz":
with open(path + args.output_extension, "wb") as output_file:
np.savez(
output_file, keypoints=keypoints, scores=scores, descriptors=descriptors
)
elif args.output_type == "mat":
with open(path + args.output_extension, "wb") as output_file:
scipy.io.savemat(
output_file,
{"keypoints": keypoints, "scores": scores, "descriptors": descriptors},
)
else:
raise ValueError("Unknown output type.")