Realcat
fix: eloftr
ac67bb3
raw
history blame
7.37 kB
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> train
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 03/04/2024 16:33
=================================================='''
import argparse
import os
import os.path as osp
import torch
import torchvision.transforms.transforms as tvt
import yaml
import torch.utils.data as Data
import torch.multiprocessing as mp
import torch.distributed as dist
from nets.sfd2 import load_sfd2
from nets.segnet import SegNet
from nets.segnetvit import SegNetViT
from nets.load_segnet import load_segnet
from dataset.utils import collect_batch
from dataset.get_dataset import compose_datasets
from tools.common import torch_set_gpu
from trainer import Trainer
def get_model(config):
desc_dim = 256 if config['feature'] == 'spp' else 128
if config['use_mid_feature']:
desc_dim = 256
model_config = {
'network': {
'descriptor_dim': desc_dim,
'n_layers': config['layers'],
'ac_fn': config['ac_fn'],
'norm_fn': config['norm_fn'],
'n_class': config['n_class'],
'output_dim': config['output_dim'],
# 'with_cls': config['with_cls'],
# 'with_sc': config['with_sc'],
'with_score': config['with_score'],
}
}
if config['network'] == 'segnet':
model = SegNet(model_config.get('network', {}))
config['with_cls'] = False
elif config['network'] == 'segnetvit':
model = SegNetViT(model_config.get('network', {}))
config['with_cls'] = False
else:
raise 'ERROR! {:s} model does not exist'.format(config['network'])
return model
parser = argparse.ArgumentParser(description='PRAM', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, required=True, help='config of specifications')
# parser.add_argument('--landmark_path', type=str, required=True, help='path of landmarks')
parser.add_argument('--feat_weight_path', type=str, default='weights/sfd2_20230511_210205_resnet4x.79.pth')
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def train_DDP(rank, world_size, model, config, train_set, test_set, feat_model, img_transforms):
print('In train_DDP..., rank: ', rank)
torch.cuda.set_device(rank)
device = torch.device(f'cuda:{rank}')
if feat_model is not None:
feat_model.to(device)
model.to(device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
setup(rank=rank, world_size=world_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set,
shuffle=True,
rank=rank,
num_replicas=world_size,
drop_last=True, # important?
)
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=config['batch_size'] // world_size,
num_workers=config['workers'] // world_size,
# num_workers=1,
pin_memory=True,
# persistent_workers=True,
shuffle=False, # must be False
drop_last=True,
collate_fn=collect_batch,
prefetch_factor=4,
sampler=train_sampler)
config['local_rank'] = rank
if rank == 0:
test_set = test_set
else:
test_set = None
trainer = Trainer(model=model, train_loader=train_loader, feat_model=feat_model, eval_loader=test_set,
config=config, img_transforms=img_transforms)
trainer.train()
if __name__ == '__main__':
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = yaml.load(f, Loader=yaml.Loader)
torch_set_gpu(gpus=config['gpu'])
if config['local_rank'] == 0:
print(config)
img_transforms = []
img_transforms.append(tvt.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
img_transforms = tvt.Compose(img_transforms)
feat_model = load_sfd2(weight_path=args.feat_weight_path).cuda().eval()
print('Load SFD2 weight from {:s}'.format(args.feat_weight_path))
dataset = config['dataset']
train_set = compose_datasets(datasets=dataset, config=config, train=True, sample_ratio=None)
if config['do_eval']:
test_set = compose_datasets(datasets=dataset, config=config, train=False, sample_ratio=None)
else:
test_set = None
config['n_class'] = train_set.n_class
# model = get_model(config=config)
model = load_segnet(network=config['network'],
n_class=config['n_class'],
desc_dim=256 if config['use_mid_feature'] else 128,
n_layers=config['layers'],
output_dim=config['output_dim'])
if config['local_rank'] == 0:
if config['resume_path'] is not None: # only for training
model.load_state_dict(
torch.load(osp.join(config['save_path'], config['resume_path']), map_location='cpu')['model'],
strict=True)
print('Load resume weight from {:s}'.format(osp.join(config['save_path'], config['resume_path'])))
if not config['with_dist'] or len(config['gpu']) == 1:
config['with_dist'] = False
model = model.cuda()
train_loader = Data.DataLoader(dataset=train_set,
shuffle=True,
batch_size=config['batch_size'],
drop_last=True,
collate_fn=collect_batch,
num_workers=config['workers'])
if test_set is not None:
test_loader = Data.DataLoader(dataset=test_set,
shuffle=False,
batch_size=1,
drop_last=False,
collate_fn=collect_batch,
num_workers=4)
else:
test_loader = None
trainer = Trainer(model=model, train_loader=train_loader, feat_model=feat_model, eval_loader=test_loader,
config=config, img_transforms=img_transforms)
trainer.train()
else:
mp.spawn(train_DDP, nprocs=len(config['gpu']),
args=(len(config['gpu']), model, config, train_set, test_set, feat_model, img_transforms),
join=True)