Spaces:
Running
Running
import os | |
import random | |
import numpy as np | |
import torch | |
from itertools import combinations | |
import cv2 | |
import gradio as gr | |
from hloc import matchers, extractors | |
from hloc.utils.base_model import dynamic_load | |
from hloc import match_dense, match_features, extract_features | |
from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def get_model(match_conf): | |
Model = dynamic_load(matchers, match_conf["model"]["name"]) | |
model = Model(match_conf["model"]).eval().to(device) | |
return model | |
def get_feature_model(conf): | |
Model = dynamic_load(extractors, conf["model"]["name"]) | |
model = Model(conf["model"]).eval().to(device) | |
return model | |
def gen_examples(): | |
random.seed(1) | |
example_matchers = [ | |
"disk+lightglue", | |
"loftr", | |
"disk", | |
"d2net", | |
"topicfm", | |
"superpoint+superglue", | |
"disk+dualsoftmax", | |
"lanet", | |
] | |
def gen_images_pairs(path: str, count: int = 5): | |
imgs_list = [ | |
os.path.join(path, file) | |
for file in os.listdir(path) | |
if file.lower().endswith((".jpg", ".jpeg", ".png")) | |
] | |
pairs = list(combinations(imgs_list, 2)) | |
selected = random.sample(range(len(pairs)), count) | |
return [pairs[i] for i in selected] | |
# image pair path | |
path = "datasets/sacre_coeur/mapping" | |
pairs = gen_images_pairs(path, len(example_matchers)) | |
match_setting_threshold = 0.1 | |
match_setting_max_features = 2000 | |
detect_keypoints_threshold = 0.01 | |
enable_ransac = True | |
ransac_method = "RANSAC" | |
ransac_reproj_threshold = 8 | |
ransac_confidence = 0.999 | |
ransac_max_iter = 10000 | |
input_lists = [] | |
for pair, mt in zip(pairs, example_matchers): | |
input_lists.append( | |
[ | |
pair[0], | |
pair[1], | |
match_setting_threshold, | |
match_setting_max_features, | |
detect_keypoints_threshold, | |
mt, | |
enable_ransac, | |
ransac_method, | |
ransac_reproj_threshold, | |
ransac_confidence, | |
ransac_max_iter, | |
] | |
) | |
return input_lists | |
def filter_matches( | |
pred, | |
ransac_method="RANSAC", | |
ransac_reproj_threshold=8, | |
ransac_confidence=0.999, | |
ransac_max_iter=10000, | |
): | |
mkpts0 = None | |
mkpts1 = None | |
feature_type = None | |
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys(): | |
mkpts0 = pred["keypoints0_orig"] | |
mkpts1 = pred["keypoints1_orig"] | |
feature_type = "KEYPOINT" | |
elif ( | |
"line_keypoints0_orig" in pred.keys() | |
and "line_keypoints1_orig" in pred.keys() | |
): | |
mkpts0 = pred["line_keypoints0_orig"] | |
mkpts1 = pred["line_keypoints1_orig"] | |
feature_type = "LINE" | |
else: | |
return pred | |
if mkpts0 is None or mkpts0 is None: | |
return pred | |
if ransac_method not in ransac_zoo.keys(): | |
ransac_method = "RANSAC" | |
H, mask = cv2.findHomography( | |
mkpts0, | |
mkpts1, | |
method=ransac_zoo[ransac_method], | |
ransacReprojThreshold=ransac_reproj_threshold, | |
confidence=ransac_confidence, | |
maxIters=ransac_max_iter, | |
) | |
mask = np.array(mask.ravel().astype("bool"), dtype="bool") | |
if H is not None: | |
if feature_type == "KEYPOINT": | |
pred["keypoints0_orig"] = mkpts0[mask] | |
pred["keypoints1_orig"] = mkpts1[mask] | |
pred["mconf"] = pred["mconf"][mask] | |
elif feature_type == "LINE": | |
pred["line_keypoints0_orig"] = mkpts0[mask] | |
pred["line_keypoints1_orig"] = mkpts1[mask] | |
return pred | |
def compute_geom( | |
pred, | |
ransac_method="RANSAC", | |
ransac_reproj_threshold=8, | |
ransac_confidence=0.999, | |
ransac_max_iter=10000, | |
) -> dict: | |
mkpts0 = None | |
mkpts1 = None | |
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys(): | |
mkpts0 = pred["keypoints0_orig"] | |
mkpts1 = pred["keypoints1_orig"] | |
if ( | |
"line_keypoints0_orig" in pred.keys() | |
and "line_keypoints1_orig" in pred.keys() | |
): | |
mkpts0 = pred["line_keypoints0_orig"] | |
mkpts1 = pred["line_keypoints1_orig"] | |
if mkpts0 is not None and mkpts1 is not None: | |
if len(mkpts0) < 8: | |
return {} | |
h1, w1, _ = pred["image0_orig"].shape | |
geo_info = {} | |
F, inliers = cv2.findFundamentalMat( | |
mkpts0, | |
mkpts1, | |
method=ransac_zoo[ransac_method], | |
ransacReprojThreshold=ransac_reproj_threshold, | |
confidence=ransac_confidence, | |
maxIters=ransac_max_iter, | |
) | |
geo_info["Fundamental"] = F.tolist() | |
H, _ = cv2.findHomography( | |
mkpts1, | |
mkpts0, | |
method=ransac_zoo[ransac_method], | |
ransacReprojThreshold=ransac_reproj_threshold, | |
confidence=ransac_confidence, | |
maxIters=ransac_max_iter, | |
) | |
geo_info["Homography"] = H.tolist() | |
_, H1, H2 = cv2.stereoRectifyUncalibrated( | |
mkpts0.reshape(-1, 2), mkpts1.reshape(-1, 2), F, imgSize=(w1, h1) | |
) | |
geo_info["H1"] = H1.tolist() | |
geo_info["H2"] = H2.tolist() | |
return geo_info | |
else: | |
return {} | |
def wrap_images(img0, img1, geo_info, geom_type): | |
h1, w1, _ = img0.shape | |
h2, w2, _ = img1.shape | |
result_matrix = None | |
if geo_info is not None and len(geo_info) != 0: | |
rectified_image0 = img0 | |
rectified_image1 = None | |
H = np.array(geo_info["Homography"]) | |
F = np.array(geo_info["Fundamental"]) | |
title = [] | |
if geom_type == "Homography": | |
rectified_image1 = cv2.warpPerspective( | |
img1, H, (img0.shape[1] + img1.shape[1], img0.shape[0]) | |
) | |
result_matrix = H | |
title = ["Image 0", "Image 1 - warped"] | |
elif geom_type == "Fundamental": | |
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"]) | |
rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1)) | |
rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2)) | |
result_matrix = F | |
title = ["Image 0 - warped", "Image 1 - warped"] | |
else: | |
print("Error: Unknown geometry type") | |
fig = plot_images( | |
[rectified_image0.squeeze(), rectified_image1.squeeze()], | |
title, | |
dpi=300, | |
) | |
dictionary = { | |
"row1": result_matrix[0].tolist(), | |
"row2": result_matrix[1].tolist(), | |
"row3": result_matrix[2].tolist(), | |
} | |
return fig2im(fig), dictionary | |
else: | |
return None, None | |
def change_estimate_geom(input_image0, input_image1, matches_info, choice): | |
if ( | |
matches_info is None | |
or len(matches_info) < 1 | |
or "geom_info" not in matches_info.keys() | |
): | |
return None, None | |
geom_info = matches_info["geom_info"] | |
wrapped_images = None | |
if choice != "No": | |
wrapped_images, _ = wrap_images( | |
input_image0, input_image1, geom_info, choice | |
) | |
return wrapped_images, matches_info | |
else: | |
return None, None | |
def display_matches(pred: dict): | |
img0 = pred["image0_orig"] | |
img1 = pred["image1_orig"] | |
num_inliers = 0 | |
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys(): | |
mkpts0 = pred["keypoints0_orig"] | |
mkpts1 = pred["keypoints1_orig"] | |
num_inliers = len(mkpts0) | |
if "mconf" in pred.keys(): | |
mconf = pred["mconf"] | |
else: | |
mconf = np.ones(len(mkpts0)) | |
fig_mkpts = draw_matches( | |
mkpts0, | |
mkpts1, | |
img0, | |
img1, | |
mconf, | |
dpi=300, | |
titles=[ | |
"Image 0 - matched keypoints", | |
"Image 1 - matched keypoints", | |
], | |
) | |
fig = fig_mkpts | |
if "line0_orig" in pred.keys() and "line1_orig" in pred.keys(): | |
# lines | |
mtlines0 = pred["line0_orig"] | |
mtlines1 = pred["line1_orig"] | |
num_inliers = len(mtlines0) | |
fig_lines = plot_images( | |
[img0.squeeze(), img1.squeeze()], | |
["Image 0 - matched lines", "Image 1 - matched lines"], | |
dpi=300, | |
) | |
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2) | |
fig_lines = fig2im(fig_lines) | |
# keypoints | |
mkpts0 = pred["line_keypoints0_orig"] | |
mkpts1 = pred["line_keypoints1_orig"] | |
if mkpts0 is not None and mkpts1 is not None: | |
num_inliers = len(mkpts0) | |
if "mconf" in pred.keys(): | |
mconf = pred["mconf"] | |
else: | |
mconf = np.ones(len(mkpts0)) | |
fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300) | |
fig_lines = cv2.resize( | |
fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0]) | |
) | |
fig = np.concatenate([fig_mkpts, fig_lines], axis=0) | |
else: | |
fig = fig_lines | |
return fig, num_inliers | |
def run_matching( | |
image0, | |
image1, | |
match_threshold, | |
extract_max_keypoints, | |
keypoint_threshold, | |
key, | |
enable_ransac=False, | |
ransac_method="RANSAC", | |
ransac_reproj_threshold=8, | |
ransac_confidence=0.999, | |
ransac_max_iter=10000, | |
choice_estimate_geom="Homography", | |
): | |
# image0 and image1 is RGB mode | |
if image0 is None or image1 is None: | |
raise gr.Error("Error: No images found! Please upload two images.") | |
model = matcher_zoo[key] | |
match_conf = model["config"] | |
# update match config | |
match_conf["model"]["match_threshold"] = match_threshold | |
match_conf["model"]["max_keypoints"] = extract_max_keypoints | |
matcher = get_model(match_conf) | |
if model["dense"]: | |
pred = match_dense.match_images( | |
matcher, image0, image1, match_conf["preprocessing"], device=device | |
) | |
del matcher | |
extract_conf = None | |
else: | |
extract_conf = model["config_feature"] | |
# update extract config | |
extract_conf["model"]["max_keypoints"] = extract_max_keypoints | |
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold | |
extractor = get_feature_model(extract_conf) | |
pred0 = extract_features.extract( | |
extractor, image0, extract_conf["preprocessing"] | |
) | |
pred1 = extract_features.extract( | |
extractor, image1, extract_conf["preprocessing"] | |
) | |
pred = match_features.match_images(matcher, pred0, pred1) | |
del extractor | |
if enable_ransac: | |
filter_matches( | |
pred, | |
ransac_method=ransac_method, | |
ransac_reproj_threshold=ransac_reproj_threshold, | |
ransac_confidence=ransac_confidence, | |
ransac_max_iter=ransac_max_iter, | |
) | |
fig, num_inliers = display_matches(pred) | |
geom_info = compute_geom(pred) | |
output_wrapped, _ = change_estimate_geom( | |
pred["image0_orig"], | |
pred["image1_orig"], | |
{"geom_info": geom_info}, | |
choice_estimate_geom, | |
) | |
del pred | |
return ( | |
fig, | |
{"matches number": num_inliers}, | |
{ | |
"match_conf": match_conf, | |
"extractor_conf": extract_conf, | |
}, | |
{ | |
"geom_info": geom_info, | |
}, | |
output_wrapped, | |
# geometry_result, | |
) | |
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html | |
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs | |
ransac_zoo = { | |
"RANSAC": cv2.RANSAC, | |
"USAC_MAGSAC": cv2.USAC_MAGSAC, | |
"USAC_DEFAULT": cv2.USAC_DEFAULT, | |
"USAC_FM_8PTS": cv2.USAC_FM_8PTS, | |
"USAC_PROSAC": cv2.USAC_PROSAC, | |
"USAC_FAST": cv2.USAC_FAST, | |
"USAC_ACCURATE": cv2.USAC_ACCURATE, | |
"USAC_PARALLEL": cv2.USAC_PARALLEL, | |
} | |
# Matchers collections | |
matcher_zoo = { | |
"gluestick": {"config": match_dense.confs["gluestick"], "dense": True}, | |
"sold2": {"config": match_dense.confs["sold2"], "dense": True}, | |
# 'dedode-sparse': { | |
# 'config': match_dense.confs['dedode_sparse'], | |
# 'dense': True # dense mode, we need 2 images | |
# }, | |
"loftr": {"config": match_dense.confs["loftr"], "dense": True}, | |
"topicfm": {"config": match_dense.confs["topicfm"], "dense": True}, | |
"aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True}, | |
"dedode": { | |
"config": match_features.confs["Dual-Softmax"], | |
"config_feature": extract_features.confs["dedode"], | |
"dense": False, | |
}, | |
"superpoint+superglue": { | |
"config": match_features.confs["superglue"], | |
"config_feature": extract_features.confs["superpoint_max"], | |
"dense": False, | |
}, | |
"superpoint+lightglue": { | |
"config": match_features.confs["superpoint-lightglue"], | |
"config_feature": extract_features.confs["superpoint_max"], | |
"dense": False, | |
}, | |
"disk": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["disk"], | |
"dense": False, | |
}, | |
"disk+dualsoftmax": { | |
"config": match_features.confs["Dual-Softmax"], | |
"config_feature": extract_features.confs["disk"], | |
"dense": False, | |
}, | |
"superpoint+dualsoftmax": { | |
"config": match_features.confs["Dual-Softmax"], | |
"config_feature": extract_features.confs["superpoint_max"], | |
"dense": False, | |
}, | |
"disk+lightglue": { | |
"config": match_features.confs["disk-lightglue"], | |
"config_feature": extract_features.confs["disk"], | |
"dense": False, | |
}, | |
"superpoint+mnn": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["superpoint_max"], | |
"dense": False, | |
}, | |
"sift+sgmnet": { | |
"config": match_features.confs["sgmnet"], | |
"config_feature": extract_features.confs["sift"], | |
"dense": False, | |
}, | |
"sosnet": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["sosnet"], | |
"dense": False, | |
}, | |
"hardnet": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["hardnet"], | |
"dense": False, | |
}, | |
"d2net": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["d2net-ss"], | |
"dense": False, | |
}, | |
# "d2net-ms": { | |
# "config": match_features.confs["NN-mutual"], | |
# "config_feature": extract_features.confs["d2net-ms"], | |
# "dense": False, | |
# }, | |
"alike": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["alike"], | |
"dense": False, | |
}, | |
"lanet": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["lanet"], | |
"dense": False, | |
}, | |
"r2d2": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["r2d2"], | |
"dense": False, | |
}, | |
"darkfeat": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["darkfeat"], | |
"dense": False, | |
}, | |
"sift": { | |
"config": match_features.confs["NN-mutual"], | |
"config_feature": extract_features.confs["sift"], | |
"dense": False, | |
}, | |
# "roma": {"config": match_dense.confs["roma"], "dense": True}, | |
# "DKMv3": {"config": match_dense.confs["dkm"], "dense": True}, | |
} | |