Vincentqyw
fix: roma
358ab8f
raw
history blame
8.99 kB
"""
Main file to launch training and testing experiments.
"""
import yaml
import os
import argparse
import numpy as np
import torch
from .config.project_config import Config as cfg
from .train import train_net
from .export import export_predictions, export_homograpy_adaptation
# Pytorch configurations
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
def load_config(config_path):
"""Load configurations from a given yaml file."""
# Check file exists
if not os.path.exists(config_path):
raise ValueError("[Error] The provided config path is not valid.")
# Load the configuration
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def update_config(path, model_cfg=None, dataset_cfg=None):
"""Update configuration file from the resume path."""
# Check we need to update or completely override.
model_cfg = {} if model_cfg is None else model_cfg
dataset_cfg = {} if dataset_cfg is None else dataset_cfg
# Load saved configs
with open(os.path.join(path, "model_cfg.yaml"), "r") as f:
model_cfg_saved = yaml.safe_load(f)
model_cfg.update(model_cfg_saved)
with open(os.path.join(path, "dataset_cfg.yaml"), "r") as f:
dataset_cfg_saved = yaml.safe_load(f)
dataset_cfg.update(dataset_cfg_saved)
# Update the saved yaml file
if not model_cfg == model_cfg_saved:
with open(os.path.join(path, "model_cfg.yaml"), "w") as f:
yaml.dump(model_cfg, f)
if not dataset_cfg == dataset_cfg_saved:
with open(os.path.join(path, "dataset_cfg.yaml"), "w") as f:
yaml.dump(dataset_cfg, f)
return model_cfg, dataset_cfg
def record_config(model_cfg, dataset_cfg, output_path):
"""Record dataset config to the log path."""
# Record model config
with open(os.path.join(output_path, "model_cfg.yaml"), "w") as f:
yaml.safe_dump(model_cfg, f)
# Record dataset config
with open(os.path.join(output_path, "dataset_cfg.yaml"), "w") as f:
yaml.safe_dump(dataset_cfg, f)
def train(args, dataset_cfg, model_cfg, output_path):
"""Training function."""
# Update model config from the resume path (only in resume mode)
if args.resume:
if os.path.realpath(output_path) != os.path.realpath(args.resume_path):
record_config(model_cfg, dataset_cfg, output_path)
# First time, then write the config file to the output path
else:
record_config(model_cfg, dataset_cfg, output_path)
# Launch the training
train_net(args, dataset_cfg, model_cfg, output_path)
def export(
args,
dataset_cfg,
model_cfg,
output_path,
export_dataset_mode=None,
device=torch.device("cuda"),
):
"""Export function."""
# Choose between normal predictions export or homography adaptation
if dataset_cfg.get("homography_adaptation") is not None:
print("[Info] Export predictions with homography adaptation.")
export_homograpy_adaptation(
args, dataset_cfg, model_cfg, output_path, export_dataset_mode, device
)
else:
print("[Info] Export predictions normally.")
export_predictions(
args, dataset_cfg, model_cfg, output_path, export_dataset_mode
)
def main(
args, dataset_cfg, model_cfg, export_dataset_mode=None, device=torch.device("cuda")
):
"""Main function."""
# Make the output path
output_path = os.path.join(cfg.EXP_PATH, args.exp_name)
if args.mode == "train":
if not os.path.exists(output_path):
os.makedirs(output_path)
print("[Info] Training mode")
print("\t Output path: %s" % output_path)
train(args, dataset_cfg, model_cfg, output_path)
elif args.mode == "export":
# Different output_path in export mode
output_path = os.path.join(cfg.export_dataroot, args.exp_name)
print("[Info] Export mode")
print("\t Output path: %s" % output_path)
export(
args,
dataset_cfg,
model_cfg,
output_path,
export_dataset_mode,
device=device,
)
else:
raise ValueError("[Error]: Unknown mode: " + args.mode)
def set_random_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
# Parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"--mode", type=str, default="train", help="'train' or 'export'."
)
parser.add_argument(
"--dataset_config", type=str, default=None, help="Path to the dataset config."
)
parser.add_argument(
"--model_config", type=str, default=None, help="Path to the model config."
)
parser.add_argument("--exp_name", type=str, default="exp", help="Experiment name.")
parser.add_argument(
"--resume",
action="store_true",
default=False,
help="Load a previously trained model.",
)
parser.add_argument(
"--pretrained",
action="store_true",
default=False,
help="Start training from a pre-trained model.",
)
parser.add_argument(
"--resume_path", default=None, help="Path from which to resume training."
)
parser.add_argument(
"--pretrained_path", default=None, help="Path to the pre-trained model."
)
parser.add_argument(
"--checkpoint_name", default=None, help="Name of the checkpoint to use."
)
parser.add_argument(
"--export_dataset_mode", default=None, help="'train' or 'test'."
)
parser.add_argument(
"--export_batch_size", default=4, type=int, help="Export batch size."
)
args = parser.parse_args()
# Check if GPU is available
# Get the model
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Check if dataset config and model config is given.
if (
((args.dataset_config is None) or (args.model_config is None))
and (not args.resume)
and (args.mode == "train")
):
raise ValueError(
"[Error] The dataset config and model config should be given in non-resume mode"
)
# If resume, check if the resume path has been given
if args.resume and (args.resume_path is None):
raise ValueError("[Error] Missing resume path.")
# [Training] Load the config file.
if args.mode == "train" and (not args.resume):
# Check the pretrained checkpoint_path exists
if args.pretrained:
checkpoint_folder = args.resume_path
checkpoint_path = os.path.join(args.pretrained_path, args.checkpoint_name)
if not os.path.exists(checkpoint_path):
raise ValueError("[Error] Missing checkpoint: " + checkpoint_path)
dataset_cfg = load_config(args.dataset_config)
model_cfg = load_config(args.model_config)
# [resume Training, Test, Export] Load the config file.
elif (args.mode == "train" and args.resume) or (args.mode == "export"):
# Check checkpoint path exists
checkpoint_folder = args.resume_path
checkpoint_path = os.path.join(args.resume_path, args.checkpoint_name)
if not os.path.exists(checkpoint_path):
raise ValueError("[Error] Missing checkpoint: " + checkpoint_path)
# Load model_cfg from checkpoint folder if not provided
if args.model_config is None:
print("[Info] No model config provided. Loading from checkpoint folder.")
model_cfg_path = os.path.join(checkpoint_folder, "model_cfg.yaml")
if not os.path.exists(model_cfg_path):
raise ValueError("[Error] Missing model config in checkpoint path.")
model_cfg = load_config(model_cfg_path)
else:
model_cfg = load_config(args.model_config)
# Load dataset_cfg from checkpoint folder if not provided
if args.dataset_config is None:
print("[Info] No dataset config provided. Loading from checkpoint folder.")
dataset_cfg_path = os.path.join(checkpoint_folder, "dataset_cfg.yaml")
if not os.path.exists(dataset_cfg_path):
raise ValueError("[Error] Missing dataset config in checkpoint path.")
dataset_cfg = load_config(dataset_cfg_path)
else:
dataset_cfg = load_config(args.dataset_config)
# Check the --export_dataset_mode flag
if (args.mode == "export") and (args.export_dataset_mode is None):
raise ValueError("[Error] Empty --export_dataset_mode flag.")
else:
raise ValueError("[Error] Unknown mode: " + args.mode)
# Set the random seed
seed = dataset_cfg.get("random_seed", 0)
set_random_seed(seed)
main(
args,
dataset_cfg,
model_cfg,
export_dataset_mode=args.export_dataset_mode,
device=device,
)