Vincentqyw
fix: roma
358ab8f
raw
history blame
12.2 kB
"""
Implements the full pipeline from raw images to line matches.
"""
import time
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.functional import softmax
from .model_util import get_model
from .loss import get_loss_and_weights
from .metrics import super_nms
from .line_detection import LineSegmentDetectionModule
from .line_matching import WunschLineMatcher
from ..train import convert_junc_predictions
from ..misc.train_utils import adapt_checkpoint
from .line_detector import line_map_to_segments
class LineMatcher(object):
"""Full line matcher including line detection and matching
with the Needleman-Wunsch algorithm."""
def __init__(
self,
model_cfg,
ckpt_path,
device,
line_detector_cfg,
line_matcher_cfg,
multiscale=False,
scales=[1.0, 2.0],
):
# Get loss weights if dynamic weighting
_, loss_weights = get_loss_and_weights(model_cfg, device)
self.device = device
# Initialize the cnn backbone
self.model = get_model(model_cfg, loss_weights)
checkpoint = torch.load(ckpt_path, map_location=self.device)
checkpoint = adapt_checkpoint(checkpoint["model_state_dict"])
self.model.load_state_dict(checkpoint)
self.model = self.model.to(self.device)
self.model = self.model.eval()
self.grid_size = model_cfg["grid_size"]
self.junc_detect_thresh = model_cfg["detection_thresh"]
self.max_num_junctions = model_cfg.get("max_num_junctions", 300)
# Initialize the line detector
self.line_detector = LineSegmentDetectionModule(**line_detector_cfg)
self.multiscale = multiscale
self.scales = scales
# Initialize the line matcher
self.line_matcher = WunschLineMatcher(**line_matcher_cfg)
# Print some debug messages
for key, val in line_detector_cfg.items():
print(f"[Debug] {key}: {val}")
# print("[Debug] detect_thresh: %f" % (line_detector_cfg["detect_thresh"]))
# print("[Debug] num_samples: %d" % (line_detector_cfg["num_samples"]))
# Perform line detection and descriptor inference on a single image
def line_detection(
self, input_image, valid_mask=None, desc_only=False, profile=False
):
# Restrict input_image to 4D torch tensor
if (not len(input_image.shape) == 4) or (
not isinstance(input_image, torch.Tensor)
):
raise ValueError("[Error] the input image should be a 4D torch tensor")
# Move the input to corresponding device
input_image = input_image.to(self.device)
# Forward of the CNN backbone
start_time = time.time()
with torch.no_grad():
net_outputs = self.model(input_image)
outputs = {"descriptor": net_outputs["descriptors"]}
if not desc_only:
junc_np = convert_junc_predictions(
net_outputs["junctions"],
self.grid_size,
self.junc_detect_thresh,
self.max_num_junctions,
)
if valid_mask is None:
junctions = np.where(junc_np["junc_pred_nms"].squeeze())
else:
junctions = np.where(junc_np["junc_pred_nms"].squeeze() * valid_mask)
junctions = np.concatenate(
[junctions[0][..., None], junctions[1][..., None]], axis=-1
)
if net_outputs["heatmap"].shape[1] == 2:
# Convert to single channel directly from here
heatmap = (
softmax(net_outputs["heatmap"], dim=1)[:, 1:, :, :]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)
)
else:
heatmap = (
torch.sigmoid(net_outputs["heatmap"])
.cpu()
.numpy()
.transpose(0, 2, 3, 1)
)
heatmap = heatmap[0, :, :, 0]
# Run the line detector.
line_map, junctions, heatmap = self.line_detector.detect(
junctions, heatmap, device=self.device
)
if isinstance(line_map, torch.Tensor):
line_map = line_map.cpu().numpy()
if isinstance(junctions, torch.Tensor):
junctions = junctions.cpu().numpy()
outputs["heatmap"] = heatmap.cpu().numpy()
outputs["junctions"] = junctions
# If it's a line map with multiple detect_thresh and inlier_thresh
if len(line_map.shape) > 2:
num_detect_thresh = line_map.shape[0]
num_inlier_thresh = line_map.shape[1]
line_segments = []
for detect_idx in range(num_detect_thresh):
line_segments_inlier = []
for inlier_idx in range(num_inlier_thresh):
line_map_tmp = line_map[detect_idx, inlier_idx, :, :]
line_segments_tmp = line_map_to_segments(
junctions, line_map_tmp
)
line_segments_inlier.append(line_segments_tmp)
line_segments.append(line_segments_inlier)
else:
line_segments = line_map_to_segments(junctions, line_map)
outputs["line_segments"] = line_segments
end_time = time.time()
if profile:
outputs["time"] = end_time - start_time
return outputs
# Perform line detection and descriptor inference at multiple scales
def multiscale_line_detection(
self,
input_image,
valid_mask=None,
desc_only=False,
profile=False,
scales=[1.0, 2.0],
aggregation="mean",
):
# Restrict input_image to 4D torch tensor
if (not len(input_image.shape) == 4) or (
not isinstance(input_image, torch.Tensor)
):
raise ValueError("[Error] the input image should be a 4D torch tensor")
# Move the input to corresponding device
input_image = input_image.to(self.device)
img_size = input_image.shape[2:4]
desc_size = tuple(np.array(img_size) // 4)
# Run the inference at multiple image scales
start_time = time.time()
junctions, heatmaps, descriptors = [], [], []
for s in scales:
# Resize the image
resized_img = F.interpolate(input_image, scale_factor=s, mode="bilinear")
# Forward of the CNN backbone
with torch.no_grad():
net_outputs = self.model(resized_img)
descriptors.append(
F.interpolate(
net_outputs["descriptors"], size=desc_size, mode="bilinear"
)
)
if not desc_only:
junc_prob = convert_junc_predictions(
net_outputs["junctions"], self.grid_size
)["junc_pred"]
junctions.append(
cv2.resize(
junc_prob.squeeze(),
(img_size[1], img_size[0]),
interpolation=cv2.INTER_LINEAR,
)
)
if net_outputs["heatmap"].shape[1] == 2:
# Convert to single channel directly from here
heatmap = softmax(net_outputs["heatmap"], dim=1)[:, 1:, :, :]
else:
heatmap = torch.sigmoid(net_outputs["heatmap"])
heatmaps.append(F.interpolate(heatmap, size=img_size, mode="bilinear"))
# Aggregate the results
if aggregation == "mean":
# Aggregation through the mean activation
descriptors = torch.stack(descriptors, dim=0).mean(0)
else:
# Aggregation through the max activation
descriptors = torch.stack(descriptors, dim=0).max(0)[0]
outputs = {"descriptor": descriptors}
if not desc_only:
if aggregation == "mean":
junctions = np.stack(junctions, axis=0).mean(0)[None]
heatmap = torch.stack(heatmaps, dim=0).mean(0)[0, 0, :, :]
heatmap = heatmap.cpu().numpy()
else:
junctions = np.stack(junctions, axis=0).max(0)[None]
heatmap = torch.stack(heatmaps, dim=0).max(0)[0][0, 0, :, :]
heatmap = heatmap.cpu().numpy()
# Extract junctions
junc_pred_nms = super_nms(
junctions[..., None],
self.grid_size,
self.junc_detect_thresh,
self.max_num_junctions,
)
if valid_mask is None:
junctions = np.where(junc_pred_nms.squeeze())
else:
junctions = np.where(junc_pred_nms.squeeze() * valid_mask)
junctions = np.concatenate(
[junctions[0][..., None], junctions[1][..., None]], axis=-1
)
# Run the line detector.
line_map, junctions, heatmap = self.line_detector.detect(
junctions, heatmap, device=self.device
)
if isinstance(line_map, torch.Tensor):
line_map = line_map.cpu().numpy()
if isinstance(junctions, torch.Tensor):
junctions = junctions.cpu().numpy()
outputs["heatmap"] = heatmap.cpu().numpy()
outputs["junctions"] = junctions
# If it's a line map with multiple detect_thresh and inlier_thresh
if len(line_map.shape) > 2:
num_detect_thresh = line_map.shape[0]
num_inlier_thresh = line_map.shape[1]
line_segments = []
for detect_idx in range(num_detect_thresh):
line_segments_inlier = []
for inlier_idx in range(num_inlier_thresh):
line_map_tmp = line_map[detect_idx, inlier_idx, :, :]
line_segments_tmp = line_map_to_segments(
junctions, line_map_tmp
)
line_segments_inlier.append(line_segments_tmp)
line_segments.append(line_segments_inlier)
else:
line_segments = line_map_to_segments(junctions, line_map)
outputs["line_segments"] = line_segments
end_time = time.time()
if profile:
outputs["time"] = end_time - start_time
return outputs
def __call__(self, images, valid_masks=[None, None], profile=False):
# Line detection and descriptor inference on both images
if self.multiscale:
forward_outputs = [
self.multiscale_line_detection(
images[0], valid_masks[0], profile=profile, scales=self.scales
),
self.multiscale_line_detection(
images[1], valid_masks[1], profile=profile, scales=self.scales
),
]
else:
forward_outputs = [
self.line_detection(images[0], valid_masks[0], profile=profile),
self.line_detection(images[1], valid_masks[1], profile=profile),
]
line_seg1 = forward_outputs[0]["line_segments"]
line_seg2 = forward_outputs[1]["line_segments"]
desc1 = forward_outputs[0]["descriptor"]
desc2 = forward_outputs[1]["descriptor"]
# Match the lines in both images
start_time = time.time()
matches = self.line_matcher.forward(line_seg1, line_seg2, desc1, desc2)
end_time = time.time()
outputs = {"line_segments": [line_seg1, line_seg2], "matches": matches}
if profile:
outputs["line_detection_time"] = (
forward_outputs[0]["time"] + forward_outputs[1]["time"]
)
outputs["line_matching_time"] = end_time - start_time
return outputs