Vincentqyw
fix: roma
358ab8f
raw
history blame
7.4 kB
import torch
import torch.nn as nn
import torch.nn.init as init
from .nets.backbone import HourglassBackbone, SuperpointBackbone
from .nets.junction_decoder import SuperpointDecoder
from .nets.heatmap_decoder import PixelShuffleDecoder
from .nets.descriptor_decoder import SuperpointDescriptor
def get_model(model_cfg=None, loss_weights=None, mode="train"):
"""Get model based on the model configuration."""
# Check dataset config is given
if model_cfg is None:
raise ValueError("[Error] The model config is required!")
# List the supported options here
print("\n\n\t--------Initializing model----------")
supported_arch = ["simple"]
if not model_cfg["model_architecture"] in supported_arch:
raise ValueError("[Error] The model architecture is not in supported arch!")
if model_cfg["model_architecture"] == "simple":
model = SOLD2Net(model_cfg)
else:
raise ValueError("[Error] The model architecture is not in supported arch!")
# Optionally register loss weights to the model
if mode == "train":
if loss_weights is not None:
for param_name, param in loss_weights.items():
if isinstance(param, nn.Parameter):
print(
"\t [Debug] Adding %s with value %f to model"
% (param_name, param.item())
)
model.register_parameter(param_name, param)
else:
raise ValueError(
"[Error] the loss weights can not be None in dynamic weighting mode during training."
)
# Display some summary info.
print("\tModel architecture: %s" % model_cfg["model_architecture"])
print("\tBackbone: %s" % model_cfg["backbone"])
print("\tJunction decoder: %s" % model_cfg["junction_decoder"])
print("\tHeatmap decoder: %s" % model_cfg["heatmap_decoder"])
print("\t-------------------------------------")
return model
class SOLD2Net(nn.Module):
"""Full network for SOLD²."""
def __init__(self, model_cfg):
super(SOLD2Net, self).__init__()
self.name = model_cfg["model_name"]
self.cfg = model_cfg
# List supported network options
self.supported_backbone = ["lcnn", "superpoint"]
self.backbone_net, self.feat_channel = self.get_backbone()
# List supported junction decoder options
self.supported_junction_decoder = ["superpoint_decoder"]
self.junction_decoder = self.get_junction_decoder()
# List supported heatmap decoder options
self.supported_heatmap_decoder = ["pixel_shuffle", "pixel_shuffle_single"]
self.heatmap_decoder = self.get_heatmap_decoder()
# List supported descriptor decoder options
if "descriptor_decoder" in self.cfg:
self.supported_descriptor_decoder = ["superpoint_descriptor"]
self.descriptor_decoder = self.get_descriptor_decoder()
# Initialize the model weights
self.apply(weight_init)
def forward(self, input_images):
# The backbone
features = self.backbone_net(input_images)
# junction decoder
junctions = self.junction_decoder(features)
# heatmap decoder
heatmaps = self.heatmap_decoder(features)
outputs = {"junctions": junctions, "heatmap": heatmaps}
# Descriptor decoder
if "descriptor_decoder" in self.cfg:
outputs["descriptors"] = self.descriptor_decoder(features)
return outputs
def get_backbone(self):
"""Retrieve the backbone encoder network."""
if not self.cfg["backbone"] in self.supported_backbone:
raise ValueError("[Error] The backbone selection is not supported.")
# lcnn backbone (stacked hourglass)
if self.cfg["backbone"] == "lcnn":
backbone_cfg = self.cfg["backbone_cfg"]
backbone = HourglassBackbone(**backbone_cfg)
feat_channel = 256
elif self.cfg["backbone"] == "superpoint":
backbone_cfg = self.cfg["backbone_cfg"]
backbone = SuperpointBackbone()
feat_channel = 128
else:
raise ValueError("[Error] The backbone selection is not supported.")
return backbone, feat_channel
def get_junction_decoder(self):
"""Get the junction decoder."""
if not self.cfg["junction_decoder"] in self.supported_junction_decoder:
raise ValueError("[Error] The junction decoder selection is not supported.")
# superpoint decoder
if self.cfg["junction_decoder"] == "superpoint_decoder":
decoder = SuperpointDecoder(self.feat_channel, self.cfg["backbone"])
else:
raise ValueError("[Error] The junction decoder selection is not supported.")
return decoder
def get_heatmap_decoder(self):
"""Get the heatmap decoder."""
if not self.cfg["heatmap_decoder"] in self.supported_heatmap_decoder:
raise ValueError("[Error] The heatmap decoder selection is not supported.")
# Pixel_shuffle decoder
if self.cfg["heatmap_decoder"] == "pixel_shuffle":
if self.cfg["backbone"] == "lcnn":
decoder = PixelShuffleDecoder(self.feat_channel, num_upsample=2)
elif self.cfg["backbone"] == "superpoint":
decoder = PixelShuffleDecoder(self.feat_channel, num_upsample=3)
else:
raise ValueError("[Error] Unknown backbone option.")
# Pixel_shuffle decoder with single channel output
elif self.cfg["heatmap_decoder"] == "pixel_shuffle_single":
if self.cfg["backbone"] == "lcnn":
decoder = PixelShuffleDecoder(
self.feat_channel, num_upsample=2, output_channel=1
)
elif self.cfg["backbone"] == "superpoint":
decoder = PixelShuffleDecoder(
self.feat_channel, num_upsample=3, output_channel=1
)
else:
raise ValueError("[Error] Unknown backbone option.")
else:
raise ValueError("[Error] The heatmap decoder selection is not supported.")
return decoder
def get_descriptor_decoder(self):
"""Get the descriptor decoder."""
if not self.cfg["descriptor_decoder"] in self.supported_descriptor_decoder:
raise ValueError(
"[Error] The descriptor decoder selection is not supported."
)
# SuperPoint descriptor
if self.cfg["descriptor_decoder"] == "superpoint_descriptor":
decoder = SuperpointDescriptor(self.feat_channel)
else:
raise ValueError(
"[Error] The descriptor decoder selection is not supported."
)
return decoder
def weight_init(m):
"""Weight initialization function."""
# Conv2D
if isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
# Batchnorm
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
# Linear
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
else:
pass