Vincentqyw
fix: roma
358ab8f
raw
history blame
5.89 kB
from math import log
from loguru import logger
import torch
from einops import repeat
from kornia.utils import create_meshgrid
from .geometry import warp_kpts
############## ↓ Coarse-Level supervision ↓ ##############
@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
"""For megadepth dataset, zero-padding exists in images"""
mask = repeat(mask, "n h w -> n (h w) c", c=2)
grid_pt[~mask.bool()] = 0
return grid_pt
@torch.no_grad()
def spvs_coarse(data, config):
"""
Update:
data (dict): {
"conf_matrix_gt": [N, hw0, hw1],
'spv_b_ids': [M]
'spv_i_ids': [M]
'spv_j_ids': [M]
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
'spv_pt1_i': [N, hw1, 2], in original image resolution
}
NOTE:
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
"""
# 1. misc
device = data["image0"].device
N, _, H0, W0 = data["image0"].shape
_, _, H1, W1 = data["image1"].shape
scale = config["MODEL"]["RESOLUTION"][0]
scale0 = scale * data["scale0"][:, None] if "scale0" in data else scale
scale1 = scale * data["scale1"][:, None] if "scale0" in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = (
create_meshgrid(h0, w0, False, device).reshape(1, h0 * w0, 2).repeat(N, 1, 1)
) # [N, hw, 2]
grid_pt0_i = scale0 * grid_pt0_c
grid_pt1_c = (
create_meshgrid(h1, w1, False, device).reshape(1, h1 * w1, 2).repeat(N, 1, 1)
)
grid_pt1_i = scale1 * grid_pt1_c
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
if "mask0" in data:
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data["mask0"])
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data["mask1"])
# warp kpts bi-directionally and resize them to coarse-level resolution
# (no depth consistency check, since it leads to worse results experimentally)
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
_, w_pt0_i = warp_kpts(
grid_pt0_i,
data["depth0"],
data["depth1"],
data["T_0to1"],
data["K0"],
data["K1"],
)
_, w_pt1_i = warp_kpts(
grid_pt1_i,
data["depth1"],
data["depth0"],
data["T_1to0"],
data["K1"],
data["K0"],
)
w_pt0_c = w_pt0_i / scale1
w_pt1_c = w_pt1_i / scale0
# 3. check if mutual nearest neighbor
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (
(pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
)
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
loop_back = torch.stack(
[nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0
)
correct_0to1 = loop_back == torch.arange(h0 * w0, device=device)[None].repeat(N, 1)
correct_0to1[:, 0] = False # ignore the top-left corner
# 4. construct a gt conf_matrix
conf_matrix_gt = torch.zeros(N, h0 * w0, h1 * w1, device=device)
b_ids, i_ids = torch.where(correct_0to1 != 0)
j_ids = nearest_index1[b_ids, i_ids]
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
data.update({"conf_matrix_gt": conf_matrix_gt})
# 5. save coarse matches(gt) for training fine level
if len(b_ids) == 0:
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
# this won't affect fine-level loss calculation
b_ids = torch.tensor([0], device=device)
i_ids = torch.tensor([0], device=device)
j_ids = torch.tensor([0], device=device)
data.update({"spv_b_ids": b_ids, "spv_i_ids": i_ids, "spv_j_ids": j_ids})
# 6. save intermediate results (for fast fine-level computation)
data.update({"spv_w_pt0_i": w_pt0_i, "spv_pt1_i": grid_pt1_i})
def compute_supervision_coarse(data, config):
assert (
len(set(data["dataset_name"])) == 1
), "Do not support mixed datasets training!"
data_source = data["dataset_name"][0]
if data_source.lower() in ["scannet", "megadepth"]:
spvs_coarse(data, config)
else:
raise ValueError(f"Unknown data source: {data_source}")
############## ↓ Fine-Level supervision ↓ ##############
@torch.no_grad()
def spvs_fine(data, config):
"""
Update:
data (dict):{
"expec_f_gt": [M, 2]}
"""
# 1. misc
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
w_pt0_i, pt1_i = data["spv_w_pt0_i"], data["spv_pt1_i"]
scale = config["MODEL"]["RESOLUTION"][1]
radius = config["MODEL"]["FINE_WINDOW_SIZE"] // 2
# 2. get coarse prediction
b_ids, i_ids, j_ids = data["b_ids"], data["i_ids"], data["j_ids"]
# 3. compute gt
scale = scale * data["scale1"][b_ids] if "scale0" in data else scale
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
expec_f_gt = (
(w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius
) # [M, 2]
data.update({"expec_f_gt": expec_f_gt})
def compute_supervision_fine(data, config):
data_source = data["dataset_name"][0]
if data_source.lower() in ["scannet", "megadepth"]:
spvs_fine(data, config)
else:
raise NotImplementedError