Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from einops.einops import rearrange | |
from .backbone import build_backbone | |
from .loftr_module import LocalFeatureTransformer, FinePreprocess | |
from .utils.coarse_matching import CoarseMatching | |
from .utils.fine_matching import FineMatching | |
from ..utils.misc import detect_NaN | |
from loguru import logger | |
def reparameter(matcher): | |
module = matcher.backbone.layer0 | |
if hasattr(module, 'switch_to_deploy'): | |
module.switch_to_deploy() | |
for modules in [matcher.backbone.layer1, matcher.backbone.layer2, matcher.backbone.layer3]: | |
for module in modules: | |
if hasattr(module, 'switch_to_deploy'): | |
module.switch_to_deploy() | |
for modules in [matcher.fine_preprocess.layer2_outconv2, matcher.fine_preprocess.layer1_outconv2]: | |
for module in modules: | |
if hasattr(module, 'switch_to_deploy'): | |
module.switch_to_deploy() | |
return matcher | |
class LoFTR(nn.Module): | |
def __init__(self, config, profiler=None): | |
super().__init__() | |
# Misc | |
self.config = config | |
self.profiler = profiler | |
# Modules | |
self.backbone = build_backbone(config) | |
self.loftr_coarse = LocalFeatureTransformer(config) | |
self.coarse_matching = CoarseMatching(config['match_coarse']) | |
self.fine_preprocess = FinePreprocess(config) | |
self.fine_matching = FineMatching(config) | |
def forward(self, data): | |
""" | |
Update: | |
data (dict): { | |
'image0': (torch.Tensor): (N, 1, H, W) | |
'image1': (torch.Tensor): (N, 1, H, W) | |
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position | |
'mask1'(optional) : (torch.Tensor): (N, H, W) | |
} | |
""" | |
# 1. Local Feature CNN | |
data.update({ | |
'bs': data['image0'].size(0), | |
'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:] | |
}) | |
if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence | |
ret_dict = self.backbone(torch.cat([data['image0'], data['image1']], dim=0)) | |
feats_c = ret_dict['feats_c'] | |
data.update({ | |
'feats_x2': ret_dict['feats_x2'], | |
'feats_x1': ret_dict['feats_x1'], | |
}) | |
(feat_c0, feat_c1) = feats_c.split(data['bs']) | |
else: # handle different input shapes | |
ret_dict0, ret_dict1 = self.backbone(data['image0']), self.backbone(data['image1']) | |
feat_c0 = ret_dict0['feats_c'] | |
feat_c1 = ret_dict1['feats_c'] | |
data.update({ | |
'feats_x2_0': ret_dict0['feats_x2'], | |
'feats_x1_0': ret_dict0['feats_x1'], | |
'feats_x2_1': ret_dict1['feats_x2'], | |
'feats_x1_1': ret_dict1['feats_x1'], | |
}) | |
mul = self.config['resolution'][0] // self.config['resolution'][1] | |
data.update({ | |
'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:], | |
'hw0_f': [feat_c0.shape[2] * mul, feat_c0.shape[3] * mul] , | |
'hw1_f': [feat_c1.shape[2] * mul, feat_c1.shape[3] * mul] | |
}) | |
# 2. coarse-level loftr module | |
mask_c0 = mask_c1 = None # mask is useful in training | |
if 'mask0' in data: | |
mask_c0, mask_c1 = data['mask0'], data['mask1'] | |
feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1) | |
feat_c0 = rearrange(feat_c0, 'n c h w -> n (h w) c') | |
feat_c1 = rearrange(feat_c1, 'n c h w -> n (h w) c') | |
# detect NaN during mixed precision training | |
if self.config['replace_nan'] and (torch.any(torch.isnan(feat_c0)) or torch.any(torch.isnan(feat_c1))): | |
detect_NaN(feat_c0, feat_c1) | |
# 3. match coarse-level | |
self.coarse_matching(feat_c0, feat_c1, data, | |
mask_c0=mask_c0.view(mask_c0.size(0), -1) if mask_c0 is not None else mask_c0, | |
mask_c1=mask_c1.view(mask_c1.size(0), -1) if mask_c1 is not None else mask_c1 | |
) | |
# prevent fp16 overflow during mixed precision training | |
feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5, | |
[feat_c0, feat_c1]) | |
# 4. fine-level refinement | |
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(feat_c0, feat_c1, data) | |
# detect NaN during mixed precision training | |
if self.config['replace_nan'] and (torch.any(torch.isnan(feat_f0_unfold)) or torch.any(torch.isnan(feat_f1_unfold))): | |
detect_NaN(feat_f0_unfold, feat_f1_unfold) | |
del feat_c0, feat_c1, mask_c0, mask_c1 | |
# 5. match fine-level | |
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) | |
def load_state_dict(self, state_dict, *args, **kwargs): | |
for k in list(state_dict.keys()): | |
if k.startswith('matcher.'): | |
state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k) | |
return super().load_state_dict(state_dict, *args, **kwargs) |