Realcat
add: efficientloftr
e02ffe6
raw
history blame
4.44 kB
"""
Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention"
Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py
"""
import torch
from torch.nn import Module
import torch.nn.functional as F
from einops.einops import rearrange
if hasattr(F, 'scaled_dot_product_attention'):
FLASH_AVAILABLE = True
from torch.backends.cuda import sdp_kernel
else:
FLASH_AVAILABLE = False
def crop_feature(query, key, value, x_mask, source_mask):
mask_h0, mask_w0, mask_h1, mask_w1 = x_mask[0].sum(-2)[0], x_mask[0].sum(-1)[0], source_mask[0].sum(-2)[0], source_mask[0].sum(-1)[0]
query = query[:, :mask_h0, :mask_w0, :]
key = key[:, :mask_h1, :mask_w1, :]
value = value[:, :mask_h1, :mask_w1, :]
return query, key, value, mask_h0, mask_w0
def pad_feature(m, mask_h0, mask_w0, x_mask):
bs, L, H, D = m.size()
m = m.view(bs, mask_h0, mask_w0, H, D)
if mask_h0 != x_mask.size(-2):
m = torch.cat([m, torch.zeros(m.size(0), x_mask.size(-2)-mask_h0, x_mask.size(-1), H, D, device=m.device, dtype=m.dtype)], dim=1)
elif mask_w0 != x_mask.size(-1):
m = torch.cat([m, torch.zeros(m.size(0), x_mask.size(-2), x_mask.size(-1)-mask_w0, H, D, device=m.device, dtype=m.dtype)], dim=2)
return m
class Attention(Module):
def __init__(self, no_flash=False, nhead=8, dim=256, fp32=False):
super().__init__()
self.flash = FLASH_AVAILABLE and not no_flash
self.nhead = nhead
self.dim = dim
self.fp32 = fp32
def attention(self, query, key, value, q_mask=None, kv_mask=None):
assert q_mask is None and kv_mask is None, "Not support generalized attention mask yet."
if self.flash and not self.fp32:
args = [x.contiguous() for x in [query, key, value]]
with sdp_kernel(enable_math= False, enable_flash= True, enable_mem_efficient= False):
out = F.scaled_dot_product_attention(*args)
elif self.flash:
args = [x.contiguous() for x in [query, key, value]]
out = F.scaled_dot_product_attention(*args)
else:
QK = torch.einsum("nlhd,nshd->nlsh", query, key)
# Compute the attention and the weighted average
softmax_temp = 1. / query.size(3)**.5 # sqrt(D)
A = torch.softmax(softmax_temp * QK, dim=2)
out = torch.einsum("nlsh,nshd->nlhd", A, value)
return out
def _forward(self, query, key, value, q_mask=None, kv_mask=None):
if q_mask is not None:
query, key, value, mask_h0, mask_w0 = crop_feature(query, key, value, q_mask, kv_mask)
if self.flash:
query, key, value = map(lambda x: rearrange(x, 'n h w (nhead d) -> n nhead (h w) d', nhead=self.nhead, d=self.dim), [query, key, value])
else:
query, key, value = map(lambda x: rearrange(x, 'n h w (nhead d) -> n (h w) nhead d', nhead=self.nhead, d=self.dim), [query, key, value])
m = self.attention(query, key, value, q_mask=None, kv_mask=None)
if self.flash:
m = rearrange(m, 'n nhead L d -> n L nhead d', nhead=self.nhead, d=self.dim)
if q_mask is not None:
m = pad_feature(m, mask_h0, mask_w0, q_mask)
return m
def forward(self, query, key, value, q_mask=None, kv_mask=None):
""" Multi-head scaled dot-product attention, a.k.a full attention.
Args:
if FLASH_AVAILABLE: # pytorch scaled_dot_product_attention
queries: [N, H, L, D]
keys: [N, H, S, D]
values: [N, H, S, D]
else:
queries: [N, L, H, D]
keys: [N, S, H, D]
values: [N, S, H, D]
q_mask: [N, L]
kv_mask: [N, S]
Returns:
queried_values: (N, L, H, D)
"""
bs = query.size(0)
if bs == 1 or q_mask is None:
m = self._forward(query, key, value, q_mask=q_mask, kv_mask=kv_mask)
else: # for faster trainning with padding mask while batch size > 1
m_list = []
for i in range(bs):
m_list.append(self._forward(query[i:i+1], key[i:i+1], value[i:i+1], q_mask=q_mask[i:i+1], kv_mask=kv_mask[i:i+1]))
m = torch.cat(m_list, dim=0)
return m