Realcat
add: efficientloftr
e02ffe6
raw
history blame
9.31 kB
import torch
import cv2
import numpy as np
from collections import OrderedDict
from loguru import logger
from kornia.geometry.epipolar import numeric
from kornia.geometry.conversions import convert_points_to_homogeneous
import pprint
# --- METRICS ---
def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
# angle error between 2 vectors
t_gt = T_0to1[:3, 3]
n = np.linalg.norm(t) * np.linalg.norm(t_gt)
t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
t_err = np.minimum(t_err, 180 - t_err) # handle E ambiguity
if np.linalg.norm(t_gt) < ignore_gt_t_thr: # pure rotation is challenging
t_err = 0
# angle error between 2 rotation matrices
R_gt = T_0to1[:3, :3]
cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
cos = np.clip(cos, -1., 1.) # handle numercial errors
R_err = np.rad2deg(np.abs(np.arccos(cos)))
return t_err, R_err
def symmetric_epipolar_distance(pts0, pts1, E, K0, K1):
"""Squared symmetric epipolar distance.
This can be seen as a biased estimation of the reprojection error.
Args:
pts0 (torch.Tensor): [N, 2]
E (torch.Tensor): [3, 3]
"""
pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
pts0 = convert_points_to_homogeneous(pts0)
pts1 = convert_points_to_homogeneous(pts1)
Ep0 = pts0 @ E.T # [N, 3]
p1Ep0 = torch.sum(pts1 * Ep0, -1) # [N,]
Etp1 = pts1 @ E # [N, 3]
d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2) + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2)) # N
return d
def compute_symmetrical_epipolar_errors(data):
"""
Update:
data (dict):{"epi_errs": [M]}
"""
Tx = numeric.cross_product_matrix(data['T_0to1'][:, :3, 3])
E_mat = Tx @ data['T_0to1'][:, :3, :3]
m_bids = data['m_bids']
pts0 = data['mkpts0_f']
pts1 = data['mkpts1_f']
epi_errs = []
for bs in range(Tx.size(0)):
mask = m_bids == bs
epi_errs.append(
symmetric_epipolar_distance(pts0[mask], pts1[mask], E_mat[bs], data['K0'][bs], data['K1'][bs]))
epi_errs = torch.cat(epi_errs, dim=0)
data.update({'epi_errs': epi_errs})
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
if len(kpts0) < 5:
return None
# normalize keypoints
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
# normalize ransac threshold
ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
# compute pose with cv2
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC)
if E is None:
print("\nE is None while trying to recover pose.\n")
return None
# recover pose from E
best_num_inliers = 0
ret = None
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
ret = (R, t[:, 0], mask.ravel() > 0)
best_num_inliers = n
return ret
def estimate_lo_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
from .warppers import Camera, Pose
import poselib
camera0, camera1 = Camera.from_calibration_matrix(K0).float(), Camera.from_calibration_matrix(K1).float()
pts0, pts1 = kpts0, kpts1
M, info = poselib.estimate_relative_pose(
pts0,
pts1,
camera0.to_cameradict(),
camera1.to_cameradict(),
{
"max_epipolar_error": thresh,
},
)
success = M is not None and ( ((M.t != [0., 0., 0.]).all()) or ((M.q != [1., 0., 0., 0.]).all()) )
if success:
M = Pose.from_Rt(torch.tensor(M.R), torch.tensor(M.t)) # .to(pts0)
# print(M)
else:
M = Pose.from_4x4mat(torch.eye(4).numpy()) # .to(pts0)
# print(M)
estimation = {
"success": success,
"M_0to1": M,
"inliers": torch.tensor(info.pop("inliers")), # .to(pts0),
**info,
}
return estimation
def compute_pose_errors(data, config):
"""
Update:
data (dict):{
"R_errs" List[float]: [N]
"t_errs" List[float]: [N]
"inliers" List[np.ndarray]: [N]
}
"""
pixel_thr = config.TRAINER.RANSAC_PIXEL_THR # 0.5
conf = config.TRAINER.RANSAC_CONF # 0.99999
RANSAC = config.TRAINER.POSE_ESTIMATION_METHOD
data.update({'R_errs': [], 't_errs': [], 'inliers': []})
m_bids = data['m_bids'].cpu().numpy()
pts0 = data['mkpts0_f'].cpu().numpy()
pts1 = data['mkpts1_f'].cpu().numpy()
K0 = data['K0'].cpu().numpy()
K1 = data['K1'].cpu().numpy()
T_0to1 = data['T_0to1'].cpu().numpy()
for bs in range(K0.shape[0]):
mask = m_bids == bs
if config.LOFTR.EVAL_TIMES >= 1:
bpts0, bpts1 = pts0[mask], pts1[mask]
R_list, T_list, inliers_list = [], [], []
# for _ in range(config.LOFTR.EVAL_TIMES):
for _ in range(5):
shuffling = np.random.permutation(np.arange(len(bpts0)))
if _ >= config.LOFTR.EVAL_TIMES:
continue
bpts0 = bpts0[shuffling]
bpts1 = bpts1[shuffling]
if RANSAC == 'RANSAC':
ret = estimate_pose(bpts0, bpts1, K0[bs], K1[bs], pixel_thr, conf=conf)
if ret is None:
R_list.append(np.inf)
T_list.append(np.inf)
inliers_list.append(np.array([]).astype(bool))
else:
R, t, inliers = ret
t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0)
R_list.append(R_err)
T_list.append(t_err)
inliers_list.append(inliers)
elif RANSAC == 'LO-RANSAC':
est = estimate_lo_pose(bpts0, bpts1, K0[bs], K1[bs], pixel_thr, conf=conf)
if not est["success"]:
R_list.append(90)
T_list.append(90)
inliers_list.append(np.array([]).astype(bool))
else:
M = est["M_0to1"]
inl = est["inliers"].numpy()
t_error, r_error = relative_pose_error(T_0to1[bs], M.R, M.t, ignore_gt_t_thr=0.0)
R_list.append(r_error)
T_list.append(t_error)
inliers_list.append(inl)
else:
raise ValueError(f"Unknown RANSAC method: {RANSAC}")
data['R_errs'].append(R_list)
data['t_errs'].append(T_list)
data['inliers'].append(inliers_list[0])
# --- METRIC AGGREGATION ---
def error_auc(errors, thresholds):
"""
Args:
errors (list): [N,]
thresholds (list)
"""
errors = [0] + sorted(list(errors))
recall = list(np.linspace(0, 1, len(errors)))
aucs = []
thresholds = [5, 10, 20]
for thr in thresholds:
last_index = np.searchsorted(errors, thr)
y = recall[:last_index] + [recall[last_index-1]]
x = errors[:last_index] + [thr]
aucs.append(np.trapz(y, x) / thr)
return {f'auc@{t}': auc for t, auc in zip(thresholds, aucs)}
def epidist_prec(errors, thresholds, ret_dict=False):
precs = []
for thr in thresholds:
prec_ = []
for errs in errors:
correct_mask = errs < thr
prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0)
precs.append(np.mean(prec_) if len(prec_) > 0 else 0)
if ret_dict:
return {f'prec@{t:.0e}': prec for t, prec in zip(thresholds, precs)}
else:
return precs
def aggregate_metrics(metrics, epi_err_thr=5e-4, config=None):
""" Aggregate metrics for the whole dataset:
(This method should be called once per dataset)
1. AUC of the pose error (angular) at the threshold [5, 10, 20]
2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth)
"""
# filter duplicates
unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics['identifiers']))
unq_ids = list(unq_ids.values())
logger.info(f'Aggregating metrics over {len(unq_ids)} unique items...')
# pose auc
angular_thresholds = [5, 10, 20]
if config.LOFTR.EVAL_TIMES >= 1:
pose_errors = np.max(np.stack([metrics['R_errs'], metrics['t_errs']]), axis=0).reshape(-1, config.LOFTR.EVAL_TIMES)[unq_ids].reshape(-1)
else:
pose_errors = np.max(np.stack([metrics['R_errs'], metrics['t_errs']]), axis=0)[unq_ids]
aucs = error_auc(pose_errors, angular_thresholds) # (auc@5, auc@10, auc@20)
# matching precision
dist_thresholds = [epi_err_thr]
precs = epidist_prec(np.array(metrics['epi_errs'], dtype=object)[unq_ids], dist_thresholds, True) # (prec@err_thr)
u_num_mathces = np.array(metrics['num_matches'], dtype=object)[unq_ids]
num_matches = {f'num_matches': u_num_mathces.mean() }
return {**aucs, **precs, **num_matches}