Spaces:
Running
Running
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Pre-training CroCo | |
# -------------------------------------------------------- | |
# References: | |
# MAE: https://github.com/facebookresearch/mae | |
# DeiT: https://github.com/facebookresearch/deit | |
# BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import argparse | |
import datetime | |
import json | |
import numpy as np | |
import os | |
import sys | |
import time | |
import math | |
from pathlib import Path | |
from typing import Iterable | |
import torch | |
import torch.distributed as dist | |
import torch.backends.cudnn as cudnn | |
from torch.utils.tensorboard import SummaryWriter | |
import torchvision.transforms as transforms | |
import torchvision.datasets as datasets | |
import utils.misc as misc | |
from utils.misc import NativeScalerWithGradNormCount as NativeScaler | |
from models.croco import CroCoNet | |
from models.criterion import MaskedMSE | |
from datasets.pairs_dataset import PairsDataset | |
def get_args_parser(): | |
parser = argparse.ArgumentParser('CroCo pre-training', add_help=False) | |
# model and criterion | |
parser.add_argument('--model', default='CroCoNet()', type=str, help="string containing the model to build") | |
parser.add_argument('--norm_pix_loss', default=1, choices=[0,1], help="apply per-patch mean/std normalization before applying the loss") | |
# dataset | |
parser.add_argument('--dataset', default='habitat_release', type=str, help="training set") | |
parser.add_argument('--transforms', default='crop224+acolor', type=str, help="transforms to apply") # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful | |
# training | |
parser.add_argument('--seed', default=0, type=int, help="Random seed") | |
parser.add_argument('--batch_size', default=64, type=int, help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") | |
parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") | |
parser.add_argument('--max_epoch', default=400, type=int, help="Stop training at this epoch") | |
parser.add_argument('--accum_iter', default=1, type=int, help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") | |
parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") | |
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') | |
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') | |
parser.add_argument('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') | |
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') | |
parser.add_argument('--amp', type=int, default=1, choices=[0,1], help="Use Automatic Mixed Precision for pretraining") | |
# others | |
parser.add_argument('--num_workers', default=8, type=int) | |
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
parser.add_argument('--save_freq', default=1, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') | |
parser.add_argument('--keep_freq', default=20, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') | |
parser.add_argument('--print_freq', default=20, type=int, help='frequence (number of iterations) to print infos while training') | |
# paths | |
parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") | |
parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") | |
return parser | |
def main(args): | |
misc.init_distributed_mode(args) | |
global_rank = misc.get_rank() | |
world_size = misc.get_world_size() | |
print("output_dir: "+args.output_dir) | |
if args.output_dir: | |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) | |
# auto resume | |
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') | |
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None | |
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) | |
print("{}".format(args).replace(', ', ',\n')) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device = torch.device(device) | |
# fix the seed | |
seed = args.seed + misc.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
cudnn.benchmark = True | |
## training dataset and loader | |
print('Building dataset for {:s} with transforms {:s}'.format(args.dataset, args.transforms)) | |
dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) | |
if world_size>1: | |
sampler_train = torch.utils.data.DistributedSampler( | |
dataset, num_replicas=world_size, rank=global_rank, shuffle=True | |
) | |
print("Sampler_train = %s" % str(sampler_train)) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(dataset) | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=True, | |
drop_last=True, | |
) | |
## model | |
print('Loading model: {:s}'.format(args.model)) | |
model = eval(args.model) | |
print('Loading criterion: MaskedMSE(norm_pix_loss={:s})'.format(str(bool(args.norm_pix_loss)))) | |
criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) | |
model.to(device) | |
model_without_ddp = model | |
print("Model = %s" % str(model_without_ddp)) | |
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() | |
if args.lr is None: # only base_lr is specified | |
args.lr = args.blr * eff_batch_size / 256 | |
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) | |
print("actual lr: %.2e" % args.lr) | |
print("accumulate grad iterations: %d" % args.accum_iter) | |
print("effective batch size: %d" % eff_batch_size) | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) | |
model_without_ddp = model.module | |
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) # following timm: set wd as 0 for bias and norm layers | |
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) | |
print(optimizer) | |
loss_scaler = NativeScaler() | |
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) | |
if global_rank == 0 and args.output_dir is not None: | |
log_writer = SummaryWriter(log_dir=args.output_dir) | |
else: | |
log_writer = None | |
print(f"Start training until {args.max_epoch} epochs") | |
start_time = time.time() | |
for epoch in range(args.start_epoch, args.max_epoch): | |
if world_size>1: | |
data_loader_train.sampler.set_epoch(epoch) | |
train_stats = train_one_epoch( | |
model, criterion, data_loader_train, | |
optimizer, device, epoch, loss_scaler, | |
log_writer=log_writer, | |
args=args | |
) | |
if args.output_dir and epoch % args.save_freq == 0 : | |
misc.save_model( | |
args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, fname='last') | |
if args.output_dir and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) and (epoch>0 or args.max_epoch==1): | |
misc.save_model( | |
args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch) | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch,} | |
if args.output_dir and misc.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, | |
data_loader: Iterable, optimizer: torch.optim.Optimizer, | |
device: torch.device, epoch: int, loss_scaler, | |
log_writer=None, | |
args=None): | |
model.train(True) | |
metric_logger = misc.MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
header = 'Epoch: [{}]'.format(epoch) | |
accum_iter = args.accum_iter | |
optimizer.zero_grad() | |
if log_writer is not None: | |
print('log_dir: {}'.format(log_writer.log_dir)) | |
for data_iter_step, (image1, image2) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): | |
# we use a per iteration lr scheduler | |
if data_iter_step % accum_iter == 0: | |
misc.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) | |
image1 = image1.to(device, non_blocking=True) | |
image2 = image2.to(device, non_blocking=True) | |
with torch.cuda.amp.autocast(enabled=bool(args.amp)): | |
out, mask, target = model(image1, image2) | |
loss = criterion(out, mask, target) | |
loss_value = loss.item() | |
if not math.isfinite(loss_value): | |
print("Loss is {}, stopping training".format(loss_value)) | |
sys.exit(1) | |
loss /= accum_iter | |
loss_scaler(loss, optimizer, parameters=model.parameters(), | |
update_grad=(data_iter_step + 1) % accum_iter == 0) | |
if (data_iter_step + 1) % accum_iter == 0: | |
optimizer.zero_grad() | |
torch.cuda.synchronize() | |
metric_logger.update(loss=loss_value) | |
lr = optimizer.param_groups[0]["lr"] | |
metric_logger.update(lr=lr) | |
loss_value_reduce = misc.all_reduce_mean(loss_value) | |
if log_writer is not None and ((data_iter_step + 1) % (accum_iter*args.print_freq)) == 0: | |
# x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes | |
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) | |
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) | |
log_writer.add_scalar('lr', lr, epoch_1000x) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |
if __name__ == '__main__': | |
args = get_args_parser() | |
args = args.parse_args() | |
main(args) | |