Vincentqyw
fix: roma
358ab8f
raw
history blame
9.19 kB
import torch
from torch import nn
import torch.nn.functional as F
# coordinates system
# ------------------------------> [ x: range=-1.0~1.0; w: range=0~W ]
# | -----------------------------
# | | |
# | | |
# | | |
# | | image |
# | | |
# | | |
# | | |
# | |---------------------------|
# v
# [ y: range=-1.0~1.0; h: range=0~H ]
def simple_nms(scores, nms_radius: int):
"""Fast Non-maximum suppression to remove nearby points"""
assert nms_radius >= 0
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def sample_descriptor(descriptor_map, kpts, bilinear_interp=False):
"""
:param descriptor_map: BxCxHxW
:param kpts: list, len=B, each is Nx2 (keypoints) [h,w]
:param bilinear_interp: bool, whether to use bilinear interpolation
:return: descriptors: list, len=B, each is NxD
"""
batch_size, channel, height, width = descriptor_map.shape
descriptors = []
for index in range(batch_size):
kptsi = kpts[index] # Nx2,(x,y)
if bilinear_interp:
descriptors_ = torch.nn.functional.grid_sample(
descriptor_map[index].unsqueeze(0),
kptsi.view(1, 1, -1, 2),
mode="bilinear",
align_corners=True,
)[
0, :, 0, :
] # CxN
else:
kptsi = (kptsi + 1) / 2 * kptsi.new_tensor([[width - 1, height - 1]])
kptsi = kptsi.long()
descriptors_ = descriptor_map[index, :, kptsi[:, 1], kptsi[:, 0]] # CxN
descriptors_ = torch.nn.functional.normalize(descriptors_, p=2, dim=0)
descriptors.append(descriptors_.t())
return descriptors
class DKD(nn.Module):
def __init__(self, radius=2, top_k=0, scores_th=0.2, n_limit=20000):
"""
Args:
radius: soft detection radius, kernel size is (2 * radius + 1)
top_k: top_k > 0: return top k keypoints
scores_th: top_k <= 0 threshold mode: scores_th > 0: return keypoints with scores>scores_th
else: return keypoints with scores > scores.mean()
n_limit: max number of keypoint in threshold mode
"""
super().__init__()
self.radius = radius
self.top_k = top_k
self.scores_th = scores_th
self.n_limit = n_limit
self.kernel_size = 2 * self.radius + 1
self.temperature = 0.1 # tuned temperature
self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)
# local xy grid
x = torch.linspace(-self.radius, self.radius, self.kernel_size)
# (kernel_size*kernel_size) x 2 : (w,h)
self.hw_grid = torch.stack(torch.meshgrid([x, x])).view(2, -1).t()[:, [1, 0]]
def detect_keypoints(self, scores_map, sub_pixel=True):
b, c, h, w = scores_map.shape
scores_nograd = scores_map.detach()
# nms_scores = simple_nms(scores_nograd, self.radius)
nms_scores = simple_nms(scores_nograd, 2)
# remove border
nms_scores[:, :, : self.radius + 1, :] = 0
nms_scores[:, :, :, : self.radius + 1] = 0
nms_scores[:, :, h - self.radius :, :] = 0
nms_scores[:, :, :, w - self.radius :] = 0
# detect keypoints without grad
if self.top_k > 0:
topk = torch.topk(nms_scores.view(b, -1), self.top_k)
indices_keypoints = topk.indices # B x top_k
else:
if self.scores_th > 0:
masks = nms_scores > self.scores_th
if masks.sum() == 0:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
else:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
masks = masks.reshape(b, -1)
indices_keypoints = [] # list, B x (any size)
scores_view = scores_nograd.reshape(b, -1)
for mask, scores in zip(masks, scores_view):
indices = mask.nonzero(as_tuple=False)[:, 0]
if len(indices) > self.n_limit:
kpts_sc = scores[indices]
sort_idx = kpts_sc.sort(descending=True)[1]
sel_idx = sort_idx[: self.n_limit]
indices = indices[sel_idx]
indices_keypoints.append(indices)
keypoints = []
scoredispersitys = []
kptscores = []
if sub_pixel:
# detect soft keypoints with grad backpropagation
patches = self.unfold(scores_map) # B x (kernel**2) x (H*W)
self.hw_grid = self.hw_grid.to(patches) # to device
for b_idx in range(b):
patch = patches[b_idx].t() # (H*W) x (kernel**2)
indices_kpt = indices_keypoints[
b_idx
] # one dimension vector, say its size is M
patch_scores = patch[indices_kpt] # M x (kernel**2)
# max is detached to prevent undesired backprop loops in the graph
max_v = patch_scores.max(dim=1).values.detach()[:, None]
x_exp = (
(patch_scores - max_v) / self.temperature
).exp() # M * (kernel**2), in [0, 1]
# \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
xy_residual = (
x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None]
) # Soft-argmax, Mx2
hw_grid_dist2 = (
torch.norm(
(self.hw_grid[None, :, :] - xy_residual[:, None, :])
/ self.radius,
dim=-1,
)
** 2
)
scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)
# compute result keypoints
keypoints_xy_nms = torch.stack(
[indices_kpt % w, indices_kpt // w], dim=1
) # Mx2
keypoints_xy = keypoints_xy_nms + xy_residual
keypoints_xy = (
keypoints_xy / keypoints_xy.new_tensor([w - 1, h - 1]) * 2 - 1
) # (w,h) -> (-1~1,-1~1)
kptscore = torch.nn.functional.grid_sample(
scores_map[b_idx].unsqueeze(0),
keypoints_xy.view(1, 1, -1, 2),
mode="bilinear",
align_corners=True,
)[
0, 0, 0, :
] # CxN
keypoints.append(keypoints_xy)
scoredispersitys.append(scoredispersity)
kptscores.append(kptscore)
else:
for b_idx in range(b):
indices_kpt = indices_keypoints[
b_idx
] # one dimension vector, say its size is M
keypoints_xy_nms = torch.stack(
[indices_kpt % w, indices_kpt // w], dim=1
) # Mx2
keypoints_xy = (
keypoints_xy_nms / keypoints_xy_nms.new_tensor([w - 1, h - 1]) * 2
- 1
) # (w,h) -> (-1~1,-1~1)
kptscore = torch.nn.functional.grid_sample(
scores_map[b_idx].unsqueeze(0),
keypoints_xy.view(1, 1, -1, 2),
mode="bilinear",
align_corners=True,
)[
0, 0, 0, :
] # CxN
keypoints.append(keypoints_xy)
scoredispersitys.append(None)
kptscores.append(kptscore)
return keypoints, scoredispersitys, kptscores
def forward(self, scores_map, descriptor_map, sub_pixel=False):
"""
:param scores_map: Bx1xHxW
:param descriptor_map: BxCxHxW
:param sub_pixel: whether to use sub-pixel keypoint detection
:return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1.0 ~ 1.0
"""
keypoints, scoredispersitys, kptscores = self.detect_keypoints(
scores_map, sub_pixel
)
descriptors = sample_descriptor(descriptor_map, keypoints, sub_pixel)
# keypoints: B M 2
# descriptors: B M D
# scoredispersitys:
return keypoints, descriptors, kptscores, scoredispersitys