Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torchvision.models as tvm | |
class Decoder(nn.Module): | |
def __init__( | |
self, layers, *args, super_resolution=False, num_prototypes=1, **kwargs | |
) -> None: | |
super().__init__(*args, **kwargs) | |
self.layers = layers | |
self.scales = self.layers.keys() | |
self.super_resolution = super_resolution | |
self.num_prototypes = num_prototypes | |
def forward(self, features, context=None, scale=None): | |
if context is not None: | |
features = torch.cat((features, context), dim=1) | |
stuff = self.layers[scale](features) | |
logits, context = ( | |
stuff[:, : self.num_prototypes], | |
stuff[:, self.num_prototypes :], | |
) | |
return logits, context | |
class ConvRefiner(nn.Module): | |
def __init__( | |
self, | |
in_dim=6, | |
hidden_dim=16, | |
out_dim=2, | |
dw=True, | |
kernel_size=5, | |
hidden_blocks=5, | |
amp=True, | |
residual=False, | |
amp_dtype=torch.float16, | |
): | |
super().__init__() | |
self.block1 = self.create_block( | |
in_dim, | |
hidden_dim, | |
dw=False, | |
kernel_size=1, | |
) | |
self.hidden_blocks = nn.Sequential( | |
*[ | |
self.create_block( | |
hidden_dim, | |
hidden_dim, | |
dw=dw, | |
kernel_size=kernel_size, | |
) | |
for hb in range(hidden_blocks) | |
] | |
) | |
self.hidden_blocks = self.hidden_blocks | |
self.out_conv = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) | |
self.amp = amp | |
self.amp_dtype = amp_dtype | |
self.residual = residual | |
def create_block( | |
self, | |
in_dim, | |
out_dim, | |
dw=True, | |
kernel_size=5, | |
bias=True, | |
norm_type=nn.BatchNorm2d, | |
): | |
num_groups = 1 if not dw else in_dim | |
if dw: | |
assert ( | |
out_dim % in_dim == 0 | |
), "outdim must be divisible by indim for depthwise" | |
conv1 = nn.Conv2d( | |
in_dim, | |
out_dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=kernel_size // 2, | |
groups=num_groups, | |
bias=bias, | |
) | |
norm = ( | |
norm_type(out_dim) | |
if norm_type is nn.BatchNorm2d | |
else norm_type(num_channels=out_dim) | |
) | |
relu = nn.ReLU(inplace=True) | |
conv2 = nn.Conv2d(out_dim, out_dim, 1, 1, 0) | |
return nn.Sequential(conv1, norm, relu, conv2) | |
def forward(self, feats): | |
b, c, hs, ws = feats.shape | |
with torch.autocast("cuda", enabled=self.amp, dtype=self.amp_dtype): | |
x0 = self.block1(feats) | |
x = self.hidden_blocks(x0) | |
if self.residual: | |
x = (x + x0) / 1.4 | |
x = self.out_conv(x) | |
return x | |