Vincentqyw
fix: roma
4c12b36
raw
history blame
4.73 kB
from abc import ABCMeta, abstractmethod
import os
import h5py
import numpy as np
from tqdm import trange
from torch.multiprocessing import Pool, set_start_method
set_start_method("spawn", force=True)
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
from components import load_component
class BaseDumper(metaclass=ABCMeta):
def __init__(self, config):
self.config = config
self.img_seq = []
self.dump_seq = [] # feature dump seq
@abstractmethod
def get_seqs(self):
raise NotImplementedError
@abstractmethod
def format_dump_folder(self):
raise NotImplementedError
@abstractmethod
def format_dump_data(self):
raise NotImplementedError
def initialize(self):
self.extractor = load_component(
"extractor", self.config["extractor"]["name"], self.config["extractor"]
)
self.get_seqs()
self.format_dump_folder()
def extract(self, index):
img_path, dump_path = self.img_seq[index], self.dump_seq[index]
if not self.config["extractor"]["overwrite"] and os.path.exists(dump_path):
return
kp, desc = self.extractor.run(img_path)
self.write_feature(kp, desc, dump_path)
def dump_feature(self):
print("Extrating features...")
self.num_img = len(self.dump_seq)
pool = Pool(self.config["extractor"]["num_process"])
iteration_num = self.num_img // self.config["extractor"]["num_process"]
if self.num_img % self.config["extractor"]["num_process"] != 0:
iteration_num += 1
for index in trange(iteration_num):
indicies_list = range(
index * self.config["extractor"]["num_process"],
min(
(index + 1) * self.config["extractor"]["num_process"], self.num_img
),
)
pool.map(self.extract, indicies_list)
pool.close()
pool.join()
def write_feature(self, pts, desc, filename):
with h5py.File(filename, "w") as ifp:
ifp.create_dataset("keypoints", pts.shape, dtype=np.float32)
ifp.create_dataset("descriptors", desc.shape, dtype=np.float32)
ifp["keypoints"][:] = pts
ifp["descriptors"][:] = desc
def form_standard_dataset(self):
dataset_path = os.path.join(
self.config["dataset_dump_dir"],
self.config["data_name"]
+ "_"
+ self.config["extractor"]["name"]
+ "_"
+ str(self.config["extractor"]["num_kpt"])
+ ".hdf5",
)
pair_data_type = ["K1", "K2", "R", "T", "e", "f"]
num_pairs = len(self.data["K1"])
with h5py.File(dataset_path, "w") as f:
print("collecting pair info...")
for type in pair_data_type:
dg = f.create_group(type)
for idx in range(num_pairs):
data_item = np.asarray(self.data[type][idx])
dg.create_dataset(
str(idx), data_item.shape, data_item.dtype, data=data_item
)
for type in ["img_path1", "img_path2"]:
dg = f.create_group(type)
for idx in range(num_pairs):
dg.create_dataset(
str(idx),
[1],
h5py.string_dtype(encoding="ascii"),
data=self.data[type][idx].encode("ascii"),
)
# dump desc
print("collecting desc and kpt...")
desc1_g, desc2_g, kpt1_g, kpt2_g = (
f.create_group("desc1"),
f.create_group("desc2"),
f.create_group("kpt1"),
f.create_group("kpt2"),
)
for idx in trange(num_pairs):
desc_file1, desc_file2 = h5py.File(
self.data["fea_path1"][idx], "r"
), h5py.File(self.data["fea_path2"][idx], "r")
desc1, desc2, kpt1, kpt2 = (
desc_file1["descriptors"][()],
desc_file2["descriptors"][()],
desc_file1["keypoints"][()],
desc_file2["keypoints"][()],
)
desc1_g.create_dataset(str(idx), desc1.shape, desc1.dtype, data=desc1)
desc2_g.create_dataset(str(idx), desc2.shape, desc2.dtype, data=desc2)
kpt1_g.create_dataset(str(idx), kpt1.shape, kpt1.dtype, data=kpt1)
kpt2_g.create_dataset(str(idx), kpt2.shape, kpt2.dtype, data=kpt2)