Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
11.3 kB
"""
Simply load images from a folder or nested folders (does not have any split),
and apply homographic adaptations to it. Yields an image pair without border
artifacts.
"""
import argparse
import logging
import shutil
import tarfile
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import omegaconf
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from ..geometry.homography import (
compute_homography,
sample_homography_corners,
warp_points,
)
from ..models.cache_loader import CacheLoader, pad_local_features
from ..settings import DATA_PATH
from ..utils.image import read_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_image_grid
from .augmentations import IdentityAugmentation, augmentations
from .base_dataset import BaseDataset
logger = logging.getLogger(__name__)
def sample_homography(img, conf: dict, size: list):
data = {}
H, _, coords, _ = sample_homography_corners(img.shape[:2][::-1], **conf)
data["image"] = cv2.warpPerspective(img, H, tuple(size))
data["H_"] = H.astype(np.float32)
data["coords"] = coords.astype(np.float32)
data["image_size"] = np.array(size, dtype=np.float32)
return data
class HomographyDataset(BaseDataset):
default_conf = {
# image search
"data_dir": "revisitop1m", # the top-level directory
"image_dir": "jpg/", # the subdirectory with the images
"image_list": "revisitop1m.txt", # optional: list or filename of list
"glob": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
# splits
"train_size": 100,
"val_size": 10,
"shuffle_seed": 0, # or None to skip
# image loading
"grayscale": False,
"triplet": False,
"right_only": False, # image0 is orig (rescaled), image1 is right
"reseed": False,
"homography": {
"difficulty": 0.8,
"translation": 1.0,
"max_angle": 60,
"n_angles": 10,
"patch_shape": [640, 480],
"min_convexity": 0.05,
},
"photometric": {
"name": "dark",
"p": 0.75,
# 'difficulty': 1.0, # currently unused
},
# feature loading
"load_features": {
"do": False,
**CacheLoader.default_conf,
"collate": False,
"thresh": 0.0,
"max_num_keypoints": -1,
"force_num_keypoints": False,
},
}
def _init(self, conf):
data_dir = DATA_PATH / conf.data_dir
if not data_dir.exists():
if conf.data_dir == "revisitop1m":
logger.info("Downloading the revisitop1m dataset.")
self.download_revisitop1m()
else:
raise FileNotFoundError(data_dir)
image_dir = data_dir / conf.image_dir
images = []
if conf.image_list is None:
glob = [conf.glob] if isinstance(conf.glob, str) else conf.glob
for g in glob:
images += list(image_dir.glob("**/" + g))
if len(images) == 0:
raise ValueError(f"Cannot find any image in folder: {image_dir}.")
images = [i.relative_to(image_dir).as_posix() for i in images]
images = sorted(images) # for deterministic behavior
logger.info("Found %d images in folder.", len(images))
elif isinstance(conf.image_list, (str, Path)):
image_list = data_dir / conf.image_list
if not image_list.exists():
raise FileNotFoundError(f"Cannot find image list {image_list}.")
images = image_list.read_text().rstrip("\n").split("\n")
for image in images:
if not (image_dir / image).exists():
raise FileNotFoundError(image_dir / image)
logger.info("Found %d images in list file.", len(images))
elif isinstance(conf.image_list, omegaconf.listconfig.ListConfig):
images = conf.image_list.to_container()
for image in images:
if not (image_dir / image).exists():
raise FileNotFoundError(image_dir / image)
else:
raise ValueError(conf.image_list)
if conf.shuffle_seed is not None:
np.random.RandomState(conf.shuffle_seed).shuffle(images)
train_images = images[: conf.train_size]
val_images = images[conf.train_size : conf.train_size + conf.val_size]
self.images = {"train": train_images, "val": val_images}
def download_revisitop1m(self):
data_dir = DATA_PATH / self.conf.data_dir
tmp_dir = data_dir.parent / "revisitop1m_tmp"
if tmp_dir.exists(): # The previous download failed.
shutil.rmtree(tmp_dir)
image_dir = tmp_dir / self.conf.image_dir
image_dir.mkdir(exist_ok=True, parents=True)
num_files = 100
url_base = "http://ptak.felk.cvut.cz/revisitop/revisitop1m/"
list_name = "revisitop1m.txt"
torch.hub.download_url_to_file(url_base + list_name, tmp_dir / list_name)
for n in tqdm(range(num_files), position=1):
tar_name = "revisitop1m.{}.tar.gz".format(n + 1)
tar_path = image_dir / tar_name
torch.hub.download_url_to_file(url_base + "jpg/" + tar_name, tar_path)
with tarfile.open(tar_path) as tar:
tar.extractall(path=image_dir)
tar_path.unlink()
shutil.move(tmp_dir, data_dir)
def get_dataset(self, split):
return _Dataset(self.conf, self.images[split], split)
class _Dataset(torch.utils.data.Dataset):
def __init__(self, conf, image_names, split):
self.conf = conf
self.split = split
self.image_names = np.array(image_names)
self.image_dir = DATA_PATH / conf.data_dir / conf.image_dir
aug_conf = conf.photometric
aug_name = aug_conf.name
assert (
aug_name in augmentations.keys()
), f'{aug_name} not in {" ".join(augmentations.keys())}'
self.photo_augment = augmentations[aug_name](aug_conf)
self.left_augment = (
IdentityAugmentation() if conf.right_only else self.photo_augment
)
self.img_to_tensor = IdentityAugmentation()
if conf.load_features.do:
self.feature_loader = CacheLoader(conf.load_features)
def _transform_keypoints(self, features, data):
"""Transform keypoints by a homography, threshold them,
and potentially keep only the best ones."""
# Warp points
features["keypoints"] = warp_points(
features["keypoints"], data["H_"], inverse=False
)
h, w = data["image"].shape[1:3]
valid = (
(features["keypoints"][:, 0] >= 0)
& (features["keypoints"][:, 0] <= w - 1)
& (features["keypoints"][:, 1] >= 0)
& (features["keypoints"][:, 1] <= h - 1)
)
features["keypoints"] = features["keypoints"][valid]
# Threshold
if self.conf.load_features.thresh > 0:
valid = features["keypoint_scores"] >= self.conf.load_features.thresh
features = {k: v[valid] for k, v in features.items()}
# Get the top keypoints and pad
n = self.conf.load_features.max_num_keypoints
if n > -1:
inds = np.argsort(-features["keypoint_scores"])
features = {k: v[inds[:n]] for k, v in features.items()}
if self.conf.load_features.force_num_keypoints:
features = pad_local_features(
features, self.conf.load_features.max_num_keypoints
)
return features
def __getitem__(self, idx):
if self.conf.reseed:
with fork_rng(self.conf.seed + idx, False):
return self.getitem(idx)
else:
return self.getitem(idx)
def _read_view(self, img, H_conf, ps, left=False):
data = sample_homography(img, H_conf, ps)
if left:
data["image"] = self.left_augment(data["image"], return_tensor=True)
else:
data["image"] = self.photo_augment(data["image"], return_tensor=True)
gs = data["image"].new_tensor([0.299, 0.587, 0.114]).view(3, 1, 1)
if self.conf.grayscale:
data["image"] = (data["image"] * gs).sum(0, keepdim=True)
if self.conf.load_features.do:
features = self.feature_loader({k: [v] for k, v in data.items()})
features = self._transform_keypoints(features, data)
data["cache"] = features
return data
def getitem(self, idx):
name = self.image_names[idx]
img = read_image(self.image_dir / name, False)
if img is None:
logging.warning("Image %s could not be read.", name)
img = np.zeros((1024, 1024) + (() if self.conf.grayscale else (3,)))
img = img.astype(np.float32) / 255.0
size = img.shape[:2][::-1]
ps = self.conf.homography.patch_shape
left_conf = omegaconf.OmegaConf.to_container(self.conf.homography)
if self.conf.right_only:
left_conf["difficulty"] = 0.0
data0 = self._read_view(img, left_conf, ps, left=True)
data1 = self._read_view(img, self.conf.homography, ps, left=False)
H = compute_homography(data0["coords"], data1["coords"], [1, 1])
data = {
"name": name,
"original_image_size": np.array(size),
"H_0to1": H.astype(np.float32),
"idx": idx,
"view0": data0,
"view1": data1,
}
if self.conf.triplet:
# Generate third image
data2 = self._read_view(img, self.conf.homography, ps, left=False)
H02 = compute_homography(data0["coords"], data2["coords"], [1, 1])
H12 = compute_homography(data1["coords"], data2["coords"], [1, 1])
data = {
"H_0to2": H02.astype(np.float32),
"H_1to2": H12.astype(np.float32),
"view2": data2,
**data,
}
return data
def __len__(self):
return len(self.image_names)
def visualize(args):
conf = {
"batch_size": 1,
"num_workers": 1,
"prefetch_factor": 1,
}
conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
dataset = HomographyDataset(conf)
loader = dataset.get_data_loader("train")
logger.info("The dataset has %d elements.", len(loader))
with fork_rng(seed=dataset.conf.seed):
images = []
for _, data in zip(range(args.num_items), loader):
images.append(
(data[f"view{i}"]["image"][0].permute(1, 2, 0) for i in range(2))
)
plot_image_grid(images, dpi=args.dpi)
plt.tight_layout()
plt.show()
if __name__ == "__main__":
from .. import logger # overwrite the logger
parser = argparse.ArgumentParser()
parser.add_argument("--num_items", type=int, default=8)
parser.add_argument("--dpi", type=int, default=100)
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
visualize(args)