Spaces:
Running
Running
import torch | |
from localization.base_model import BaseModel | |
def find_nn(sim, ratio_thresh, distance_thresh): | |
sim_nn, ind_nn = sim.topk(2 if ratio_thresh else 1, dim=-1, largest=True) | |
dist_nn = 2 * (1 - sim_nn) | |
mask = torch.ones(ind_nn.shape[:-1], dtype=torch.bool, device=sim.device) | |
if ratio_thresh: | |
mask = mask & (dist_nn[..., 0] <= (ratio_thresh ** 2) * dist_nn[..., 1]) | |
if distance_thresh: | |
mask = mask & (dist_nn[..., 0] <= distance_thresh ** 2) | |
matches = torch.where(mask, ind_nn[..., 0], ind_nn.new_tensor(-1)) | |
scores = torch.where(mask, (sim_nn[..., 0] + 1) / 2, sim_nn.new_tensor(0)) | |
return matches, scores | |
def mutual_check(m0, m1): | |
inds0 = torch.arange(m0.shape[-1], device=m0.device) | |
loop = torch.gather(m1, -1, torch.where(m0 > -1, m0, m0.new_tensor(0))) | |
ok = (m0 > -1) & (inds0 == loop) | |
m0_new = torch.where(ok, m0, m0.new_tensor(-1)) | |
return m0_new | |
class NearestNeighbor(BaseModel): | |
default_conf = { | |
'ratio_threshold': None, | |
'distance_threshold': None, | |
'do_mutual_check': True, | |
} | |
required_inputs = ['descriptors0', 'descriptors1'] | |
def _init(self, conf): | |
pass | |
def _forward(self, data): | |
sim = torch.einsum( | |
'bdn,bdm->bnm', data['descriptors0'], data['descriptors1']) | |
matches0, scores0 = find_nn( | |
sim, self.conf['ratio_threshold'], self.conf['distance_threshold']) | |
# matches1, scores1 = find_nn( | |
# sim.transpose(1, 2), self.conf['ratio_threshold'], | |
# self.conf['distance_threshold']) | |
if self.conf['do_mutual_check']: | |
# print("with mutual check") | |
matches1, scores1 = find_nn( | |
sim.transpose(1, 2), self.conf['ratio_threshold'], | |
self.conf['distance_threshold']) | |
matches0 = mutual_check(matches0, matches1) | |
# else: | |
# print("no mutual check") | |
return { | |
'matches0': matches0, | |
'matching_scores0': scores0, | |
} | |