Spaces:
Running
on
Zero
Running
on
Zero
| # -*- coding: UTF-8 -*- | |
| '''================================================= | |
| @Project -> File pram -> retnet | |
| @IDE PyCharm | |
| @Author fx221@cam.ac.uk | |
| @Date 22/02/2024 15:23 | |
| ==================================================''' | |
| # -*- coding: UTF-8 -*- | |
| '''================================================= | |
| @Project -> File glretrieve -> retnet | |
| @IDE PyCharm | |
| @Author fx221@cam.ac.uk | |
| @Date 15/02/2024 10:55 | |
| ==================================================''' | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=dilation, groups=groups, bias=False, dilation=dilation) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| """1x1 convolution""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| class ResBlock(nn.Module): | |
| def __init__(self, inplanes, outplanes, stride=1, groups=32, dilation=1, norm_layer=None, ac_fn=None): | |
| super(ResBlock, self).__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm2d | |
| self.conv1 = conv1x1(inplanes, outplanes) | |
| self.bn1 = norm_layer(outplanes) | |
| self.conv2 = conv3x3(outplanes, outplanes, stride, groups, dilation) | |
| self.bn2 = norm_layer(outplanes) | |
| self.conv3 = conv1x1(outplanes, outplanes) | |
| self.bn3 = norm_layer(outplanes) | |
| if ac_fn is None: | |
| self.ac_fn = nn.ReLU(inplace=True) | |
| else: | |
| self.ac_fn = ac_fn | |
| def forward(self, x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.ac_fn(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.ac_fn(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| out += identity | |
| out = self.ac_fn(out) | |
| return out | |
| class GeneralizedMeanPooling(nn.Module): | |
| r"""Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. | |
| The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` | |
| - At p = infinity, one gets Max Pooling | |
| - At p = 1, one gets Average Pooling | |
| The output is of size H x W, for any input size. | |
| The number of output features is equal to the number of input planes. | |
| Args: | |
| output_size: the target output size of the image of the form H x W. | |
| Can be a tuple (H, W) or a single H for a square image H x H | |
| H and W can be either a ``int``, or ``None`` which means the size will | |
| be the same as that of the input. | |
| """ | |
| def __init__(self, norm, output_size=1, eps=1e-6): | |
| super(GeneralizedMeanPooling, self).__init__() | |
| assert norm > 0 | |
| self.p = float(norm) | |
| self.output_size = output_size | |
| self.eps = eps | |
| def forward(self, x): | |
| x = x.clamp(min=self.eps).pow(self.p) | |
| return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p) | |
| def __repr__(self): | |
| return self.__class__.__name__ + '(' \ | |
| + str(self.p) + ', ' \ | |
| + 'output_size=' + str(self.output_size) + ')' | |
| class GeneralizedMeanPoolingP(GeneralizedMeanPooling): | |
| """ Same, but norm is trainable | |
| """ | |
| def __init__(self, norm=3, output_size=1, eps=1e-6): | |
| super(GeneralizedMeanPoolingP, self).__init__(norm, output_size, eps) | |
| self.p = nn.Parameter(torch.ones(1) * norm) | |
| class Flatten(nn.Module): | |
| def forward(self, input): | |
| return input.view(input.size(0), -1) | |
| class L2Norm(nn.Module): | |
| def __init__(self, dim=1): | |
| super().__init__() | |
| self.dim = dim | |
| def forward(self, input): | |
| return F.normalize(input, p=2, dim=self.dim) | |
| class RetNet(nn.Module): | |
| def __init__(self, indim=256, outdim=1024): | |
| super().__init__() | |
| ac_fn = nn.GELU() | |
| self.convs = nn.Sequential( | |
| # no batch normalization | |
| nn.Conv2d(in_channels=indim, out_channels=512, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(512), | |
| # nn.ReLU(), | |
| ResBlock(512, 512, groups=32, stride=1, ac_fn=ac_fn), | |
| ResBlock(512, 512, groups=32, stride=1, ac_fn=ac_fn), | |
| nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(1024), | |
| # nn.ReLU(), | |
| ResBlock(inplanes=1024, outplanes=1024, groups=32, stride=1, ac_fn=ac_fn), | |
| ResBlock(inplanes=1024, outplanes=1024, groups=32, stride=1, ac_fn=ac_fn), | |
| ) | |
| self.pool = GeneralizedMeanPoolingP() | |
| self.fc = nn.Linear(1024, out_features=outdim) | |
| def initialize(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, 0, 0.01) | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, x): | |
| out = self.convs(x) | |
| out = self.pool(out).reshape(x.shape[0], -1) | |
| out = self.fc(out) | |
| out = F.normalize(out, p=2, dim=1) | |
| return out | |
| if __name__ == '__main__': | |
| mode = RetNet(indim=256, outdim=1024) | |
| state_dict = mode.state_dict() | |
| keys = state_dict.keys() | |
| print(keys) | |
| shapes = [state_dict[v].shape for v in keys] | |
| print(shapes) | |