Spaces:
Running
Running
import cv2 | |
import os | |
from tqdm import tqdm | |
import torch | |
import numpy as np | |
from extract import extract_method | |
use_cuda = torch.cuda.is_available() | |
device = torch.device('cuda' if use_cuda else 'cpu') | |
methods = ['d2', 'lfnet', 'superpoint', 'r2d2', 'aslfeat', 'disk', | |
'alike-n', 'alike-l', 'alike-n-ms', 'alike-l-ms'] | |
names = ['D2-Net(MS)', 'LF-Net(MS)', 'SuperPoint', 'R2D2(MS)', 'ASLFeat(MS)', 'DISK', | |
'ALike-N', 'ALike-L', 'ALike-N(MS)', 'ALike-L(MS)'] | |
top_k = None | |
n_i = 52 | |
n_v = 56 | |
cache_dir = 'hseq/cache' | |
dataset_path = 'hseq/hpatches-sequences-release' | |
def generate_read_function(method, extension='ppm'): | |
def read_function(seq_name, im_idx): | |
aux = np.load(os.path.join(dataset_path, seq_name, '%d.%s.%s' % (im_idx, extension, method))) | |
if top_k is None: | |
return aux['keypoints'], aux['descriptors'] | |
else: | |
assert ('scores' in aux) | |
ids = np.argsort(aux['scores'])[-top_k:] | |
return aux['keypoints'][ids, :], aux['descriptors'][ids, :] | |
return read_function | |
def mnn_matcher(descriptors_a, descriptors_b): | |
device = descriptors_a.device | |
sim = descriptors_a @ descriptors_b.t() | |
nn12 = torch.max(sim, dim=1)[1] | |
nn21 = torch.max(sim, dim=0)[1] | |
ids1 = torch.arange(0, sim.shape[0], device=device) | |
mask = (ids1 == nn21[nn12]) | |
matches = torch.stack([ids1[mask], nn12[mask]]) | |
return matches.t().data.cpu().numpy() | |
def homo_trans(coord, H): | |
kpt_num = coord.shape[0] | |
homo_coord = np.concatenate((coord, np.ones((kpt_num, 1))), axis=-1) | |
proj_coord = np.matmul(H, homo_coord.T).T | |
proj_coord = proj_coord / proj_coord[:, 2][..., None] | |
proj_coord = proj_coord[:, 0:2] | |
return proj_coord | |
def benchmark_features(read_feats): | |
lim = [1, 5] | |
rng = np.arange(lim[0], lim[1] + 1) | |
seq_names = sorted(os.listdir(dataset_path)) | |
n_feats = [] | |
n_matches = [] | |
seq_type = [] | |
i_err = {thr: 0 for thr in rng} | |
v_err = {thr: 0 for thr in rng} | |
i_err_homo = {thr: 0 for thr in rng} | |
v_err_homo = {thr: 0 for thr in rng} | |
for seq_idx, seq_name in tqdm(enumerate(seq_names), total=len(seq_names)): | |
keypoints_a, descriptors_a = read_feats(seq_name, 1) | |
n_feats.append(keypoints_a.shape[0]) | |
# =========== compute homography | |
ref_img = cv2.imread(os.path.join(dataset_path, seq_name, '1.ppm')) | |
ref_img_shape = ref_img.shape | |
for im_idx in range(2, 7): | |
keypoints_b, descriptors_b = read_feats(seq_name, im_idx) | |
n_feats.append(keypoints_b.shape[0]) | |
matches = mnn_matcher( | |
torch.from_numpy(descriptors_a).to(device=device), | |
torch.from_numpy(descriptors_b).to(device=device) | |
) | |
homography = np.loadtxt(os.path.join(dataset_path, seq_name, "H_1_" + str(im_idx))) | |
pos_a = keypoints_a[matches[:, 0], : 2] | |
pos_a_h = np.concatenate([pos_a, np.ones([matches.shape[0], 1])], axis=1) | |
pos_b_proj_h = np.transpose(np.dot(homography, np.transpose(pos_a_h))) | |
pos_b_proj = pos_b_proj_h[:, : 2] / pos_b_proj_h[:, 2:] | |
pos_b = keypoints_b[matches[:, 1], : 2] | |
dist = np.sqrt(np.sum((pos_b - pos_b_proj) ** 2, axis=1)) | |
n_matches.append(matches.shape[0]) | |
seq_type.append(seq_name[0]) | |
if dist.shape[0] == 0: | |
dist = np.array([float("inf")]) | |
for thr in rng: | |
if seq_name[0] == 'i': | |
i_err[thr] += np.mean(dist <= thr) | |
else: | |
v_err[thr] += np.mean(dist <= thr) | |
# =========== compute homography | |
gt_homo = homography | |
pred_homo, _ = cv2.findHomography(keypoints_a[matches[:, 0], : 2], keypoints_b[matches[:, 1], : 2], | |
cv2.RANSAC) | |
if pred_homo is None: | |
homo_dist = np.array([float("inf")]) | |
else: | |
corners = np.array([[0, 0], | |
[ref_img_shape[1] - 1, 0], | |
[0, ref_img_shape[0] - 1], | |
[ref_img_shape[1] - 1, ref_img_shape[0] - 1]]) | |
real_warped_corners = homo_trans(corners, gt_homo) | |
warped_corners = homo_trans(corners, pred_homo) | |
homo_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1)) | |
for thr in rng: | |
if seq_name[0] == 'i': | |
i_err_homo[thr] += np.mean(homo_dist <= thr) | |
else: | |
v_err_homo[thr] += np.mean(homo_dist <= thr) | |
seq_type = np.array(seq_type) | |
n_feats = np.array(n_feats) | |
n_matches = np.array(n_matches) | |
return i_err, v_err, i_err_homo, v_err_homo, [seq_type, n_feats, n_matches] | |
if __name__ == '__main__': | |
errors = {} | |
for method in methods: | |
output_file = os.path.join(cache_dir, method + '.npy') | |
read_function = generate_read_function(method) | |
if os.path.exists(output_file): | |
errors[method] = np.load(output_file, allow_pickle=True) | |
else: | |
extract_method(method) | |
errors[method] = benchmark_features(read_function) | |
np.save(output_file, errors[method]) | |
for name, method in zip(names, methods): | |
i_err, v_err, i_err_hom, v_err_hom, _ = errors[method] | |
print(f"====={name}=====") | |
print(f"MMA@1 MMA@2 MMA@3 MHA@1 MHA@2 MHA@3: ", end='') | |
for thr in range(1, 4): | |
err = (i_err[thr] + v_err[thr]) / ((n_i + n_v) * 5) | |
print(f"{err * 100:.2f}%", end=' ') | |
for thr in range(1, 4): | |
err_hom = (i_err_hom[thr] + v_err_hom[thr]) / ((n_i + n_v) * 5) | |
print(f"{err_hom * 100:.2f}%", end=' ') | |
print('') | |