Spaces:
Running
Running
from os import path as osp | |
from typing import Dict | |
from unicodedata import name | |
import numpy as np | |
import torch | |
import torch.utils as utils | |
from numpy.linalg import inv | |
from src.utils.dataset import ( | |
read_scannet_gray, | |
read_scannet_depth, | |
read_scannet_pose, | |
read_scannet_intrinsic | |
) | |
class ScanNetDataset(utils.data.Dataset): | |
def __init__(self, | |
root_dir, | |
npz_path, | |
intrinsic_path, | |
mode='train', | |
min_overlap_score=0.4, | |
augment_fn=None, | |
pose_dir=None, | |
**kwargs): | |
"""Manage one scene of ScanNet Dataset. | |
Args: | |
root_dir (str): ScanNet root directory that contains scene folders. | |
npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. | |
intrinsic_path (str): path to depth-camera intrinsic file. | |
mode (str): options are ['train', 'val', 'test']. | |
augment_fn (callable, optional): augments images with pre-defined visual effects. | |
pose_dir (str): ScanNet root directory that contains all poses. | |
(we use a separate (optional) pose_dir since we store images and poses separately.) | |
""" | |
super().__init__() | |
self.root_dir = root_dir | |
self.pose_dir = pose_dir if pose_dir is not None else root_dir | |
self.mode = mode | |
# prepare data_names, intrinsics and extrinsics(T) | |
with np.load(npz_path) as data: | |
self.data_names = data['name'] | |
if 'score' in data.keys() and mode not in ['val' or 'test']: | |
kept_mask = data['score'] > min_overlap_score | |
self.data_names = self.data_names[kept_mask] | |
self.intrinsics = dict(np.load(intrinsic_path)) | |
# for training LoFTR | |
self.augment_fn = augment_fn if mode == 'train' else None | |
def __len__(self): | |
return len(self.data_names) | |
def _read_abs_pose(self, scene_name, name): | |
pth = osp.join(self.pose_dir, | |
scene_name, | |
'pose', f'{name}.txt') | |
return read_scannet_pose(pth) | |
def _compute_rel_pose(self, scene_name, name0, name1): | |
pose0 = self._read_abs_pose(scene_name, name0) | |
pose1 = self._read_abs_pose(scene_name, name1) | |
return np.matmul(pose1, inv(pose0)) # (4, 4) | |
def __getitem__(self, idx): | |
data_name = self.data_names[idx] | |
scene_name, scene_sub_name, stem_name_0, stem_name_1 = data_name | |
scene_name = f'scene{scene_name:04d}_{scene_sub_name:02d}' | |
# read the grayscale image which will be resized to (1, 480, 640) | |
img_name0 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_0}.jpg') | |
img_name1 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_1}.jpg') | |
# TODO: Support augmentation & handle seeds for each worker correctly. | |
image0 = read_scannet_gray(img_name0, resize=(640, 480), augment_fn=None) | |
# augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) | |
image1 = read_scannet_gray(img_name1, resize=(640, 480), augment_fn=None) | |
# augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) | |
# read the depthmap which is stored as (480, 640) | |
if self.mode in ['train', 'val']: | |
depth0 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_0}.png')) | |
depth1 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_1}.png')) | |
else: | |
depth0 = depth1 = torch.tensor([]) | |
# read the intrinsic of depthmap | |
K_0 = K_1 = torch.tensor(self.intrinsics[scene_name].copy(), dtype=torch.float).reshape(3, 3) | |
# read and compute relative poses | |
T_0to1 = torch.tensor(self._compute_rel_pose(scene_name, stem_name_0, stem_name_1), | |
dtype=torch.float32) | |
T_1to0 = T_0to1.inverse() | |
data = { | |
'image0': image0, # (1, h, w) | |
'depth0': depth0, # (h, w) | |
'image1': image1, | |
'depth1': depth1, | |
'T_0to1': T_0to1, # (4, 4) | |
'T_1to0': T_1to0, | |
'K0': K_0, # (3, 3) | |
'K1': K_1, | |
'dataset_name': 'ScanNet', | |
'scene_id': scene_name, | |
'pair_id': idx, | |
'pair_names': (osp.join(scene_name, 'color', f'{stem_name_0}.jpg'), | |
osp.join(scene_name, 'color', f'{stem_name_1}.jpg')) | |
} | |
return data | |