Vincentqyw
update: features and matchers
437b5f6
raw
history blame
4.77 kB
from pathlib import Path
import argparse
import cv2
import matplotlib.cm as cm
import torch
import numpy as np
from utils.nnmatching import NNMatching
from utils.misc import (AverageTimer, VideoStreamer, make_matching_plot_fast, frame2tensor)
torch.set_grad_enabled(False)
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000)
if ransac_inliers is None or ransac_model.shape != (3,3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
sizer = (960, 640)
focallength_x = 4.504986436499113e+03/(6744/sizer[0])
focallength_y = 4.513311442889859e+03/(4502/sizer[1])
K = np.eye(3)
K[0,0] = focallength_x
K[1,1] = focallength_y
K[0,2] = 3.363322177533149e+03/(6744/sizer[0])# * 0.5
K[1,2] = 2.291824660547715e+03/(4502/sizer[1])# * 0.5
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='DarkFeat demo',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input', type=str,
help='path to an image directory')
parser.add_argument(
'--output_dir', type=str, default=None,
help='Directory where to write output frames (If None, no output)')
parser.add_argument(
'--image_glob', type=str, nargs='+', default=['*.ARW'],
help='Glob if a directory of images is specified')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--force_cpu', action='store_true',
help='Force pytorch to run in CPU mode.')
parser.add_argument('--model_path', type=str,
help='Path to the pretrained model')
opt = parser.parse_args()
print(opt)
assert len(opt.resize) == 2
print('Will resize to {}x{} (WxH)'.format(opt.resize[0], opt.resize[1]))
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
matching = NNMatching(opt.model_path).eval().to(device)
keys = ['keypoints', 'scores', 'descriptors']
vs = VideoStreamer(opt.input, opt.resize, opt.image_glob)
frame, ret = vs.next_frame()
assert ret, 'Error when reading the first frame (try different --input?)'
frame_tensor = frame2tensor(frame, device)
last_data = matching.darkfeat({'image': frame_tensor})
last_data = {k+'0': [last_data[k]] for k in keys}
last_data['image0'] = frame_tensor
last_frame = frame
last_image_id = 0
if opt.output_dir is not None:
print('==> Will write outputs to {}'.format(opt.output_dir))
Path(opt.output_dir).mkdir(exist_ok=True)
timer = AverageTimer()
while True:
frame, ret = vs.next_frame()
if not ret:
print('Finished demo_darkfeat.py')
break
timer.update('data')
stem0, stem1 = last_image_id, vs.i - 1
frame_tensor = frame2tensor(frame, device)
pred = matching({**last_data, 'image1': frame_tensor})
kpts0 = last_data['keypoints0'][0].cpu().numpy()
kpts1 = pred['keypoints1'][0].cpu().numpy()
matches = pred['matches0'][0].cpu().numpy()
confidence = pred['matching_scores0'][0].cpu().numpy()
timer.update('forward')
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
E, inliers, pts1, pts2 = compute_essential(mkpts0, mkpts1, K)
color = cm.jet(np.clip(confidence[valid][inliers[:, 0].astype('bool')] * 2 - 1, -1, 1))
text = [
'DarkFeat',
'Matches: {}'.format(inliers.sum())
]
out = make_matching_plot_fast(
last_frame, frame, mkpts0[inliers[:, 0].astype('bool')], mkpts1[inliers[:, 0].astype('bool')], color, text,
path=None, small_text=' ')
if opt.output_dir is not None:
stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
out_file = str(Path(opt.output_dir, stem + '.png'))
print('Writing image to {}'.format(out_file))
cv2.imwrite(out_file, out)