Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from .reliability_loss import APLoss | |
class MultiPixelAPLoss (nn.Module): | |
""" Computes the pixel-wise AP loss: | |
Given two images and ground-truth optical flow, computes the AP per pixel. | |
feat1: (B, C, H, W) pixel-wise features extracted from img1 | |
feat2: (B, C, H, W) pixel-wise features extracted from img2 | |
aflow: (B, 2, H, W) absolute flow: aflow[...,y1,x1] = x2,y2 | |
""" | |
def __init__(self, sampler, nq=20): | |
nn.Module.__init__(self) | |
self.aploss = APLoss(nq, min=0, max=1, euc=False) | |
self.sampler = sampler | |
self.base = 0.25 | |
self.dec_base = 0.20 | |
def loss_from_ap(self, ap, rel, noise_ap, noise_rel): | |
dec_ap = torch.clamp(ap - noise_ap, min=0, max=1) | |
return (1 - ap*noise_rel - (1-noise_rel)*self.base), (1. - dec_ap*(1-noise_rel) - noise_rel*self.dec_base) | |
def forward(self, feat0, feat1, noise_feat0, noise_feat1, conf0, conf1, noise_conf0, noise_conf1, pos0, pos1, B, H, W, N=1500): | |
# subsample things | |
scores, noise_scores, gt, msk, qconf, noise_qconf = self.sampler(feat0, feat1, noise_feat0, noise_feat1, \ | |
conf0, conf1, noise_conf0, noise_conf1, pos0, pos1, B, H, W, N=1500) | |
# compute pixel-wise AP | |
n = qconf.numel() | |
if n == 0: return 0, 0 | |
scores, noise_scores, gt = scores.view(n,-1), noise_scores, gt.view(n,-1) | |
ap = self.aploss(scores, gt).view(msk.shape) | |
noise_ap = self.aploss(noise_scores, gt).view(msk.shape) | |
pixel_loss = self.loss_from_ap(ap, qconf, noise_ap, noise_qconf) | |
loss = pixel_loss[0][msk].mean(), pixel_loss[1][msk].mean() | |
return loss |