Realcat
add: efficientloftr
e02ffe6
import pytorch_lightning as pl
import argparse
import pprint
from loguru import logger as loguru_logger
from src.config.default import get_cfg_defaults
from src.utils.profiler import build_profiler
from src.lightning.data import MultiSceneDataModule
from src.lightning.lightning_loftr import PL_LoFTR
import torch
def parse_args():
# init a costum parser which will be added into pl.Trainer parser
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'data_cfg_path', type=str, help='data config path')
parser.add_argument(
'main_cfg_path', type=str, help='main config path')
parser.add_argument(
'--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint')
parser.add_argument(
'--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir")
parser.add_argument(
'--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset')
parser.add_argument(
'--batch_size', type=int, default=1, help='batch_size per gpu')
parser.add_argument(
'--num_workers', type=int, default=2)
parser.add_argument(
'--thr', type=float, default=None, help='modify the coarse-level matching threshold.')
parser.add_argument(
'--pixel_thr', type=float, default=None, help='modify the RANSAC threshold.')
parser.add_argument(
'--ransac', type=str, default=None, help='modify the RANSAC method')
parser.add_argument(
'--scannetX', type=int, default=None, help='ScanNet resize X')
parser.add_argument(
'--scannetY', type=int, default=None, help='ScanNet resize Y')
parser.add_argument(
'--megasize', type=int, default=None, help='MegaDepth resize')
parser.add_argument(
'--npe', action='store_true', default=False, help='')
parser.add_argument(
'--fp32', action='store_true', default=False, help='')
parser.add_argument(
'--ransac_times', type=int, default=None, help='repeat ransac multiple times for more robust evaluation')
parser.add_argument(
'--rmbd', type=int, default=None, help='remove border matches')
parser.add_argument(
'--deter', action='store_true', default=False, help='use deterministic mode for testing')
parser.add_argument(
'--half', action='store_true', default=False, help='pure16')
parser.add_argument(
'--flash', action='store_true', default=False, help='flash')
parser = pl.Trainer.add_argparse_args(parser)
return parser.parse_args()
def inplace_relu(m):
classname = m.__class__.__name__
if classname.find('ReLU') != -1:
m.inplace=True
if __name__ == '__main__':
# parse arguments
args = parse_args()
pprint.pprint(vars(args))
# init default-cfg and merge it with the main- and data-cfg
config = get_cfg_defaults()
config.merge_from_file(args.main_cfg_path)
config.merge_from_file(args.data_cfg_path)
if args.deter:
torch.backends.cudnn.deterministic = True
pl.seed_everything(config.TRAINER.SEED) # reproducibility
# tune when testing
if args.thr is not None:
config.LOFTR.MATCH_COARSE.THR = args.thr
if args.scannetX is not None and args.scannetY is not None:
config.DATASET.SCAN_IMG_RESIZEX = args.scannetX
config.DATASET.SCAN_IMG_RESIZEY = args.scannetY
if args.megasize is not None:
config.DATASET.MGDPT_IMG_RESIZE = args.megasize
if args.npe:
if config.LOFTR.COARSE.ROPE:
assert config.DATASET.NPE_NAME is not None
if config.DATASET.NPE_NAME is not None:
if config.DATASET.NPE_NAME == 'megadepth':
config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.MGDPT_IMG_RESIZE, config.DATASET.MGDPT_IMG_RESIZE] # [832, 832, 1152, 1152]
elif config.DATASET.NPE_NAME == 'scannet':
config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.SCAN_IMG_RESIZEX, config.DATASET.SCAN_IMG_RESIZEX] # [832, 832, 640, 640]
else:
config.LOFTR.COARSE.NPE = [832, 832, 832, 832]
if args.ransac_times is not None:
config.LOFTR.EVAL_TIMES = args.ransac_times
if args.rmbd is not None:
config.LOFTR.MATCH_COARSE.BORDER_RM = args.rmbd
if args.pixel_thr is not None:
config.TRAINER.RANSAC_PIXEL_THR = args.pixel_thr
if args.ransac is not None:
config.TRAINER.POSE_ESTIMATION_METHOD = args.ransac
if args.ransac == 'LO-RANSAC' and config.TRAINER.RANSAC_PIXEL_THR == 0.5:
config.TRAINER.RANSAC_PIXEL_THR = 2.0
if args.fp32:
config.LOFTR.MP = False
if args.half:
config.LOFTR.HALF = True
config.DATASET.FP16 = True
else:
config.LOFTR.HALF = False
config.DATASET.FP16 = False
if args.flash:
config.LOFTR.COARSE.NO_FLASH = False
loguru_logger.info(f"Args and config initialized!")
# lightning module
profiler = build_profiler(args.profiler_name)
model = PL_LoFTR(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir)
loguru_logger.info(f"LoFTR-lightning initialized!")
# lightning data
data_module = MultiSceneDataModule(args, config)
loguru_logger.info(f"DataModule initialized!")
# lightning trainer
trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False)
loguru_logger.info(f"Start testing!")
trainer.test(model, datamodule=data_module, verbose=False)