Vincentqyw
update: roma and dust3r
e8fe67e
from einops.einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from romatch.utils.utils import get_gt_warp
import wandb
import romatch
import math
class RobustLosses(nn.Module):
def __init__(
self,
robust=False,
center_coords=False,
scale_normalize=False,
ce_weight=0.01,
local_loss=True,
local_dist=4.0,
local_largest_scale=8,
smooth_mask = False,
depth_interpolation_mode = "bilinear",
mask_depth_loss = False,
relative_depth_error_threshold = 0.05,
alpha = 1.,
c = 1e-3,
):
super().__init__()
self.robust = robust # measured in pixels
self.center_coords = center_coords
self.scale_normalize = scale_normalize
self.ce_weight = ce_weight
self.local_loss = local_loss
self.local_dist = local_dist
self.local_largest_scale = local_largest_scale
self.smooth_mask = smooth_mask
self.depth_interpolation_mode = depth_interpolation_mode
self.mask_depth_loss = mask_depth_loss
self.relative_depth_error_threshold = relative_depth_error_threshold
self.avg_overlap = dict()
self.alpha = alpha
self.c = c
def gm_cls_loss(self, x2, prob, scale_gm_cls, gm_certainty, scale):
with torch.no_grad():
B, C, H, W = scale_gm_cls.shape
device = x2.device
cls_res = round(math.sqrt(C))
G = torch.meshgrid(*[torch.linspace(-1+1/cls_res, 1 - 1/cls_res, steps = cls_res,device = device) for _ in range(2)])
G = torch.stack((G[1], G[0]), dim = -1).reshape(C,2)
GT = (G[None,:,None,None,:]-x2[:,None]).norm(dim=-1).min(dim=1).indices
cls_loss = F.cross_entropy(scale_gm_cls, GT, reduction = 'none')[prob > 0.99]
certainty_loss = F.binary_cross_entropy_with_logits(gm_certainty[:,0], prob)
if not torch.any(cls_loss):
cls_loss = (certainty_loss * 0.0) # Prevent issues where prob is 0 everywhere
losses = {
f"gm_certainty_loss_{scale}": certainty_loss.mean(),
f"gm_cls_loss_{scale}": cls_loss.mean(),
}
wandb.log(losses, step = romatch.GLOBAL_STEP)
return losses
def delta_cls_loss(self, x2, prob, flow_pre_delta, delta_cls, certainty, scale, offset_scale):
with torch.no_grad():
B, C, H, W = delta_cls.shape
device = x2.device
cls_res = round(math.sqrt(C))
G = torch.meshgrid(*[torch.linspace(-1+1/cls_res, 1 - 1/cls_res, steps = cls_res,device = device) for _ in range(2)])
G = torch.stack((G[1], G[0]), dim = -1).reshape(C,2) * offset_scale
GT = (G[None,:,None,None,:] + flow_pre_delta[:,None] - x2[:,None]).norm(dim=-1).min(dim=1).indices
cls_loss = F.cross_entropy(delta_cls, GT, reduction = 'none')[prob > 0.99]
if not torch.any(cls_loss):
cls_loss = (certainty_loss * 0.0) # Prevent issues where prob is 0 everywhere
certainty_loss = F.binary_cross_entropy_with_logits(certainty[:,0], prob)
losses = {
f"delta_certainty_loss_{scale}": certainty_loss.mean(),
f"delta_cls_loss_{scale}": cls_loss.mean(),
}
wandb.log(losses, step = romatch.GLOBAL_STEP)
return losses
def regression_loss(self, x2, prob, flow, certainty, scale, eps=1e-8, mode = "delta"):
epe = (flow.permute(0,2,3,1) - x2).norm(dim=-1)
if scale == 1:
pck_05 = (epe[prob > 0.99] < 0.5 * (2/512)).float().mean()
wandb.log({"train_pck_05": pck_05}, step = romatch.GLOBAL_STEP)
ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0], prob)
a = self.alpha[scale] if isinstance(self.alpha, dict) else self.alpha
cs = self.c * scale
x = epe[prob > 0.99]
reg_loss = cs**a * ((x/(cs))**2 + 1**2)**(a/2)
if not torch.any(reg_loss):
reg_loss = (ce_loss * 0.0) # Prevent issues where prob is 0 everywhere
losses = {
f"{mode}_certainty_loss_{scale}": ce_loss.mean(),
f"{mode}_regression_loss_{scale}": reg_loss.mean(),
}
wandb.log(losses, step = romatch.GLOBAL_STEP)
return losses
def forward(self, corresps, batch):
scales = list(corresps.keys())
tot_loss = 0.0
# scale_weights due to differences in scale for regression gradients and classification gradients
scale_weights = {1:1, 2:1, 4:1, 8:1, 16:1}
for scale in scales:
scale_corresps = corresps[scale]
scale_certainty, flow_pre_delta, delta_cls, offset_scale, scale_gm_cls, scale_gm_certainty, flow, scale_gm_flow = (
scale_corresps["certainty"],
scale_corresps.get("flow_pre_delta"),
scale_corresps.get("delta_cls"),
scale_corresps.get("offset_scale"),
scale_corresps.get("gm_cls"),
scale_corresps.get("gm_certainty"),
scale_corresps["flow"],
scale_corresps.get("gm_flow"),
)
if flow_pre_delta is not None:
flow_pre_delta = rearrange(flow_pre_delta, "b d h w -> b h w d")
b, h, w, d = flow_pre_delta.shape
else:
# _ = 1
b, _, h, w = scale_certainty.shape
gt_warp, gt_prob = get_gt_warp(
batch["im_A_depth"],
batch["im_B_depth"],
batch["T_1to2"],
batch["K1"],
batch["K2"],
H=h,
W=w,
)
x2 = gt_warp.float()
prob = gt_prob
if self.local_largest_scale >= scale:
prob = prob * (
F.interpolate(prev_epe[:, None], size=(h, w), mode="nearest-exact")[:, 0]
< (2 / 512) * (self.local_dist[scale] * scale))
if scale_gm_cls is not None:
gm_cls_losses = self.gm_cls_loss(x2, prob, scale_gm_cls, scale_gm_certainty, scale)
gm_loss = self.ce_weight * gm_cls_losses[f"gm_certainty_loss_{scale}"] + gm_cls_losses[f"gm_cls_loss_{scale}"]
tot_loss = tot_loss + scale_weights[scale] * gm_loss
elif scale_gm_flow is not None:
gm_flow_losses = self.regression_loss(x2, prob, scale_gm_flow, scale_gm_certainty, scale, mode = "gm")
gm_loss = self.ce_weight * gm_flow_losses[f"gm_certainty_loss_{scale}"] + gm_flow_losses[f"gm_regression_loss_{scale}"]
tot_loss = tot_loss + scale_weights[scale] * gm_loss
if delta_cls is not None:
delta_cls_losses = self.delta_cls_loss(x2, prob, flow_pre_delta, delta_cls, scale_certainty, scale, offset_scale)
delta_cls_loss = self.ce_weight * delta_cls_losses[f"delta_certainty_loss_{scale}"] + delta_cls_losses[f"delta_cls_loss_{scale}"]
tot_loss = tot_loss + scale_weights[scale] * delta_cls_loss
else:
delta_regression_losses = self.regression_loss(x2, prob, flow, scale_certainty, scale)
reg_loss = self.ce_weight * delta_regression_losses[f"delta_certainty_loss_{scale}"] + delta_regression_losses[f"delta_regression_loss_{scale}"]
tot_loss = tot_loss + scale_weights[scale] * reg_loss
prev_epe = (flow.permute(0,2,3,1) - x2).norm(dim=-1).detach()
return tot_loss