Spaces:
Running
Running
import warnings | |
import torch.nn as nn | |
import torch | |
from romatch.models.matcher import * | |
from romatch.models.transformer import Block, TransformerDecoder, MemEffAttention | |
from romatch.models.encoders import * | |
from romatch.models.tiny import TinyRoMa | |
def tiny_roma_v1_model(weights = None, freeze_xfeat=False, exact_softmax=False, xfeat = None): | |
model = TinyRoMa( | |
xfeat = xfeat, | |
freeze_xfeat=freeze_xfeat, | |
exact_softmax=exact_softmax) | |
if weights is not None: | |
model.load_state_dict(weights) | |
return model | |
def roma_model(resolution, upsample_preds, device = None, weights=None, dinov2_weights=None, amp_dtype: torch.dtype=torch.float16, **kwargs): | |
# romatch weights and dinov2 weights are loaded seperately, as dinov2 weights are not parameters | |
#torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul TODO: these probably ruin stuff, should be careful | |
#torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
gp_dim = 512 | |
feat_dim = 512 | |
decoder_dim = gp_dim + feat_dim | |
cls_to_coord_res = 64 | |
coordinate_decoder = TransformerDecoder( | |
nn.Sequential(*[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]), | |
decoder_dim, | |
cls_to_coord_res**2 + 1, | |
is_classifier=True, | |
amp = True, | |
pos_enc = False,) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
displacement_emb = "linear" | |
disable_local_corr_grad = True | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": ConvRefiner( | |
2 * 512+128+(2*7+1)**2, | |
2 * 512+128+(2*7+1)**2, | |
2 + 1, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=128, | |
local_corr_radius = 7, | |
corr_in_other = True, | |
amp = True, | |
disable_local_corr_grad = disable_local_corr_grad, | |
bn_momentum = 0.01, | |
), | |
"8": ConvRefiner( | |
2 * 512+64+(2*3+1)**2, | |
2 * 512+64+(2*3+1)**2, | |
2 + 1, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=64, | |
local_corr_radius = 3, | |
corr_in_other = True, | |
amp = True, | |
disable_local_corr_grad = disable_local_corr_grad, | |
bn_momentum = 0.01, | |
), | |
"4": ConvRefiner( | |
2 * 256+32+(2*2+1)**2, | |
2 * 256+32+(2*2+1)**2, | |
2 + 1, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=32, | |
local_corr_radius = 2, | |
corr_in_other = True, | |
amp = True, | |
disable_local_corr_grad = disable_local_corr_grad, | |
bn_momentum = 0.01, | |
), | |
"2": ConvRefiner( | |
2 * 64+16, | |
128+16, | |
2 + 1, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=16, | |
amp = True, | |
disable_local_corr_grad = disable_local_corr_grad, | |
bn_momentum = 0.01, | |
), | |
"1": ConvRefiner( | |
2 * 9 + 6, | |
24, | |
2 + 1, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks = hidden_blocks, | |
displacement_emb = displacement_emb, | |
displacement_emb_dim = 6, | |
amp = True, | |
disable_local_corr_grad = disable_local_corr_grad, | |
bn_momentum = 0.01, | |
), | |
} | |
) | |
kernel_temperature = 0.2 | |
learn_temperature = False | |
no_cov = True | |
kernel = CosKernel | |
only_attention = False | |
basis = "fourier" | |
gp16 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gps = nn.ModuleDict({"16": gp16}) | |
proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512)) | |
proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512)) | |
proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256)) | |
proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64)) | |
proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9)) | |
proj = nn.ModuleDict({ | |
"16": proj16, | |
"8": proj8, | |
"4": proj4, | |
"2": proj2, | |
"1": proj1, | |
}) | |
displacement_dropout_p = 0.0 | |
gm_warp_dropout_p = 0.0 | |
decoder = Decoder(coordinate_decoder, | |
gps, | |
proj, | |
conv_refiner, | |
detach=True, | |
scales=["16", "8", "4", "2", "1"], | |
displacement_dropout_p = displacement_dropout_p, | |
gm_warp_dropout_p = gm_warp_dropout_p) | |
encoder = CNNandDinov2( | |
cnn_kwargs = dict( | |
pretrained=False, | |
amp = True), | |
amp = True, | |
use_vgg = True, | |
dinov2_weights = dinov2_weights, | |
amp_dtype=amp_dtype, | |
) | |
h,w = resolution | |
symmetric = True | |
attenuate_cert = True | |
sample_mode = "threshold_balanced" | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w, upsample_preds=upsample_preds, | |
symmetric = symmetric, attenuate_cert = attenuate_cert, sample_mode = sample_mode, **kwargs).to(device) | |
matcher.load_state_dict(weights) | |
return matcher | |