Realcat
fix: eloftr
63f3cf2
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> adagml
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 11/02/2024 14:29
=================================================='''
import torch
from torch import nn
import torch.nn.functional as F
from typing import Callable
import time
import numpy as np
torch.backends.cudnn.deterministic = True
eps = 1e-8
def arange_like(x, dim: int):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
def dual_softmax(M, dustbin):
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1)
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2)
score = torch.log_softmax(M, dim=-1) + torch.log_softmax(M, dim=1)
return torch.exp(score)
def sinkhorn(M, r, c, iteration):
p = torch.softmax(M, dim=-1)
u = torch.ones_like(r)
v = torch.ones_like(c)
for _ in range(iteration):
u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps)
v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps)
p = p * u.unsqueeze(-1) * v.unsqueeze(-2)
return p
def sink_algorithm(M, dustbin, iteration):
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1)
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2)
r = torch.ones([M.shape[0], M.shape[1] - 1], device='cuda')
r = torch.cat([r, torch.ones([M.shape[0], 1], device='cuda') * M.shape[1]], dim=-1)
c = torch.ones([M.shape[0], M.shape[2] - 1], device='cuda')
c = torch.cat([c, torch.ones([M.shape[0], 1], device='cuda') * M.shape[2]], dim=-1)
p = sinkhorn(M, r, c, iteration)
return p
def normalize_keypoints(kpts, image_shape):
""" Normalize keypoints locations based on image image_shape"""
_, _, height, width = image_shape
one = kpts.new_tensor(1)
size = torch.stack([one * width, one * height])[None]
center = size / 2
scaling = size.max(1, keepdim=True).values * 0.7
return (kpts - center[:, None, :]) / scaling[:, None, :]
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x = x.unflatten(-1, (-1, 2))
x1, x2 = x.unbind(dim=-1)
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)
def apply_cached_rotary_emb(
freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * freqs[0]) + (rotate_half(t) * freqs[1])
class LearnableFourierPositionalEncoding(nn.Module):
def __init__(self, M: int, dim: int, F_dim: int = None,
gamma: float = 1.0) -> None:
super().__init__()
F_dim = F_dim if F_dim is not None else dim
self.gamma = gamma
self.Wr = nn.Linear(M, F_dim // 2, bias=False)
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" encode position vector """
projected = self.Wr(x)
cosines, sines = torch.cos(projected), torch.sin(projected)
emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
return emb.repeat_interleave(2, dim=-1)
class KeypointEncoder(nn.Module):
""" Joint encoding of visual appearance and location using MLPs"""
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(3, 32),
nn.LayerNorm(32, elementwise_affine=True),
nn.GELU(),
nn.Linear(32, 64),
nn.LayerNorm(64, elementwise_affine=True),
nn.GELU(),
nn.Linear(64, 128),
nn.LayerNorm(128, elementwise_affine=True),
nn.GELU(),
nn.Linear(128, 256),
)
def forward(self, kpts, scores):
inputs = [kpts, scores.unsqueeze(2)] # [B, N, 2] + [B, N, 1]
return self.encoder(torch.cat(inputs, dim=-1))
class PoolingLayer(nn.Module):
def __init__(self, hidden_dim: int, score_dim: int = 2):
super().__init__()
self.score_enc = nn.Sequential(
nn.Linear(score_dim, hidden_dim),
nn.LayerNorm(hidden_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),
)
self.proj = nn.Linear(hidden_dim, hidden_dim)
self.predict = nn.Sequential(
nn.Linear(hidden_dim * 2, hidden_dim),
nn.LayerNorm(hidden_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(hidden_dim, 1),
)
def forward(self, x, score):
score_ = self.score_enc(score)
x_ = self.proj(x)
confidence = self.predict(torch.cat([x_, score_], -1))
confidence = torch.sigmoid(confidence)
return confidence
class Attention(nn.Module):
def __init__(self):
super().__init__()
def forward(self, q, k, v):
s = q.shape[-1] ** -0.5
attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1)
return torch.einsum('...ij,...jd->...id', attn, v), torch.mean(torch.mean(attn, dim=1), dim=1)
class SelfMultiHeadAttention(nn.Module):
def __init__(self, feat_dim: int, hidden_dim: int, num_heads: int):
super().__init__()
self.feat_dim = feat_dim
self.num_heads = num_heads
assert feat_dim % num_heads == 0
self.head_dim = feat_dim // num_heads
self.qkv = nn.Linear(feat_dim, hidden_dim * 3)
self.attn = Attention()
self.proj = nn.Linear(hidden_dim, hidden_dim)
self.mlp = nn.Sequential(
nn.Linear(feat_dim + hidden_dim, feat_dim * 2),
nn.LayerNorm(feat_dim * 2, elementwise_affine=True),
nn.GELU(),
nn.Linear(feat_dim * 2, feat_dim)
)
def forward_(self, x, encoding=None):
qkv = self.qkv(x)
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
if encoding is not None:
q = apply_cached_rotary_emb(encoding, q)
k = apply_cached_rotary_emb(encoding, k)
attn, attn_score = self.attn(q, k, v)
message = self.proj(attn.transpose(1, 2).flatten(start_dim=-2))
return x + self.mlp(torch.cat([x, message], -1)), attn_score
def forward(self, x0, x1, encoding0=None, encoding1=None):
x0_, att_score00 = self.forward_(x=x0, encoding=encoding0)
x1_, att_score11 = self.forward_(x=x1, encoding=encoding1)
return x0_, x1_, att_score00, att_score11
class CrossMultiHeadAttention(nn.Module):
def __init__(self, feat_dim: int, hidden_dim: int, num_heads: int):
super().__init__()
self.feat_dim = feat_dim
self.num_heads = num_heads
assert hidden_dim % num_heads == 0
dim_head = hidden_dim // num_heads
self.scale = dim_head ** -0.5
self.to_qk = nn.Linear(feat_dim, hidden_dim)
self.to_v = nn.Linear(feat_dim, hidden_dim)
self.proj = nn.Linear(hidden_dim, hidden_dim)
self.mlp = nn.Sequential(
nn.Linear(feat_dim + hidden_dim, feat_dim * 2),
nn.LayerNorm(feat_dim * 2, elementwise_affine=True),
nn.GELU(),
nn.Linear(feat_dim * 2, feat_dim),
)
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
return func(x0), func(x1)
def forward(self, x0, x1):
qk0 = self.to_qk(x0)
qk1 = self.to_qk(x1)
v0 = self.to_v(x0)
v1 = self.to_v(x1)
qk0, qk1, v0, v1 = map(
lambda t: t.unflatten(-1, (self.num_heads, -1)).transpose(1, 2),
(qk0, qk1, v0, v1))
qk0, qk1 = qk0 * self.scale ** 0.5, qk1 * self.scale ** 0.5
sim = torch.einsum('b h i d, b h j d -> b h i j', qk0, qk1)
attn01 = F.softmax(sim, dim=-1)
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
m0 = torch.einsum('bhij, bhjd -> bhid', attn01, v1)
m1 = torch.einsum('bhji, bhjd -> bhid', attn10.transpose(-2, -1), v0)
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2),
m0, m1)
m0, m1 = self.map_(self.proj, m0, m1)
x0 = x0 + self.mlp(torch.cat([x0, m0], -1))
x1 = x1 + self.mlp(torch.cat([x1, m1], -1))
return x0, x1, torch.mean(torch.mean(attn10, dim=1), dim=1), torch.mean(torch.mean(attn01, dim=1), dim=1)
class AdaGML(nn.Module):
default_config = {
'descriptor_dim': 128,
'hidden_dim': 256,
'weights': 'indoor',
'keypoint_encoder': [32, 64, 128, 256],
'GNN_layers': ['self', 'cross'] * 9, # [self, cross, self, cross, ...] 9 in total
'sinkhorn_iterations': 20,
'match_threshold': 0.2,
'with_pose': True,
'n_layers': 9,
'n_min_tokens': 256,
'with_sinkhorn': True,
'min_confidence': 0.9,
'classification_background_weight': 0.05,
'pretrained': True,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.n_layers = self.config['n_layers']
self.first_layer_pooling = 0
self.n_min_tokens = self.config['n_min_tokens']
self.min_confidence = self.config['min_confidence']
self.classification_background_weight = self.config['classification_background_weight']
self.with_sinkhorn = self.config['with_sinkhorn']
self.match_threshold = self.config['match_threshold']
self.sinkhorn_iterations = self.config['sinkhorn_iterations']
self.input_proj = nn.Linear(self.config['descriptor_dim'], self.config['hidden_dim'])
self.self_attn = nn.ModuleList(
[SelfMultiHeadAttention(feat_dim=self.config['hidden_dim'],
hidden_dim=self.config['hidden_dim'],
num_heads=4) for _ in range(self.n_layers)]
)
self.cross_attn = nn.ModuleList(
[CrossMultiHeadAttention(feat_dim=self.config['hidden_dim'],
hidden_dim=self.config['hidden_dim'],
num_heads=4) for _ in range(self.n_layers)]
)
head_dim = self.config['hidden_dim'] // 4
self.poseenc = LearnableFourierPositionalEncoding(2, head_dim, head_dim)
self.out_proj = nn.ModuleList(
[nn.Linear(self.config['hidden_dim'], self.config['hidden_dim']) for _ in range(self.n_layers)]
)
bin_score = torch.nn.Parameter(torch.tensor(1.))
self.register_parameter('bin_score', bin_score)
self.pooling = nn.ModuleList(
[PoolingLayer(score_dim=2, hidden_dim=self.config['hidden_dim']) for _ in range(self.n_layers)]
)
# self.pretrained = config['pretrained']
# if self.pretrained:
# bin_score.requires_grad = False
# for m in [self.input_proj, self.out_proj, self.poseenc, self.self_attn, self.cross_attn]:
# for p in m.parameters():
# p.requires_grad = False
def forward(self, data, mode=0):
if not self.training:
if mode == 0:
return self.produce_matches(data=data)
else:
return self.run(data=data)
return self.forward_train(data=data)
def forward_train(self, data: dict, p=0.2, **kwargs):
pass
def produce_matches(self, data: dict, p: float = 0.2, **kwargs):
desc0, desc1 = data['descriptors0'], data['descriptors1']
kpts0, kpts1 = data['keypoints0'], data['keypoints1']
scores0, scores1 = data['scores0'], data['scores1']
# Keypoint normalization.
if 'norm_keypoints0' in data.keys() and 'norm_keypoints1' in data.keys():
norm_kpts0 = data['norm_keypoints0']
norm_kpts1 = data['norm_keypoints1']
elif 'image0' in data.keys() and 'image1' in data.keys():
norm_kpts0 = normalize_keypoints(kpts0, data['image0'].shape)
norm_kpts1 = normalize_keypoints(kpts1, data['image1'].shape)
elif 'image_shape0' in data.keys() and 'image_shape1' in data.keys():
norm_kpts0 = normalize_keypoints(kpts0, data['image_shape0'])
norm_kpts1 = normalize_keypoints(kpts1, data['image_shape1'])
else:
raise ValueError('Require image shape for keypoint coordinate normalization')
desc0 = desc0.detach() # [B, N, D]
desc1 = desc1.detach()
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
enc0 = self.poseenc(norm_kpts0)
enc1 = self.poseenc(norm_kpts1)
nI = self.config['n_layers']
nB = desc0.shape[0]
m = desc0.shape[1]
n = desc1.shape[1]
dev = desc0.device
ind0 = torch.arange(0, m, device=dev)[None]
ind1 = torch.arange(0, n, device=dev)[None]
do_pooling = True
for ni in range(nI):
desc0, desc1, att_score00, att_score11 = self.self_attn[ni](desc0, desc1, enc0, enc1)
desc0, desc1, att_score01, att_score10 = self.cross_attn[ni](desc0, desc1)
att_score0 = torch.cat([att_score00.unsqueeze(-1), att_score01.unsqueeze(-1)], dim=-1)
att_score1 = torch.cat([att_score11.unsqueeze(-1), att_score10.unsqueeze(-1)], dim=-1)
conf0 = self.pooling[ni](desc0, att_score0).squeeze(-1)
conf1 = self.pooling[ni](desc1, att_score1).squeeze(-1)
if do_pooling and ni >= 1:
if desc0.shape[1] >= self.n_min_tokens:
mask0 = conf0 > self.confidence_threshold(layer_index=ni)
ind0 = ind0[mask0][None]
desc0 = desc0[mask0][None]
enc0 = enc0[:, :, mask0][:, None]
if desc1.shape[1] >= self.n_min_tokens:
mask1 = conf1 > self.confidence_threshold(layer_index=ni)
ind1 = ind1[mask1][None]
desc1 = desc1[mask1][None]
enc1 = enc1[:, :, mask1][:, None]
# print('pooling: ', ni, desc0.shape, desc1.shape)
# print('ni: {:d}: pooling: {:.4f}'.format(ni, time.time() - t_start))
# t_start = time.time()
if self.check_if_stop(confidences0=conf0, confidences1=conf1, layer_index=ni, num_points=m + n):
# print('ni:{:d}: checking: {:.4f}'.format(ni, time.time() - t_start))
break
if ni == nI: ni = nI - 1
d = desc0.shape[-1]
mdesc0 = self.out_proj[ni](desc0) / d ** .25
mdesc1 = self.out_proj[ni](desc1) / d ** .25
dist = torch.einsum('bmd,bnd->bmn', mdesc0, mdesc1)
score = self.compute_score(dist=dist, dustbin=self.bin_score, iteration=self.sinkhorn_iterations)
indices0, indices1, mscores0, mscores1 = self.compute_matches(scores=score, p=p)
valid = indices0 > -1
m_indices0 = torch.where(valid)[1]
m_indices1 = indices0[valid]
mind0 = ind0[0, m_indices0]
mind1 = ind1[0, m_indices1]
indices0_full = torch.full((nB, m), -1, device=dev, dtype=indices0.dtype)
indices0_full[:, mind0] = mind1
mscores0_full = torch.zeros((nB, m), device=dev)
mscores0_full[:, ind0] = mscores0
indices0 = indices0_full
mscores0 = mscores0_full
output = {
'matches0': indices0, # use -1 for invalid match
# 'matches1': indices1, # use -1 for invalid match
'matching_scores0': mscores0,
}
return output
def run(self, data, p=0.2):
desc0 = data['desc1']
# print('desc0: ', torch.sum(desc0 ** 2, dim=-1))
# desc0 = torch.nn.functional.normalize(desc0, dim=-1)
desc0 = desc0.detach()
desc1 = data['desc2']
# desc1 = torch.nn.functional.normalize(desc1, dim=-1)
desc1 = desc1.detach()
kpts0 = data['x1'][:, :, :2]
kpts1 = data['x2'][:, :, :2]
# kpts0 = normalize_keypoints(kpts=kpts0, image_shape=data['image_shape1'])
# kpts1 = normalize_keypoints(kpts=kpts1, image_shape=data['image_shape2'])
scores0 = data['x1'][:, :, -1]
scores1 = data['x2'][:, :, -1]
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
enc0 = self.poseenc(kpts0)
enc1 = self.poseenc(kpts1)
nB = desc0.shape[0]
nI = self.n_layers
m, n = desc0.shape[1], desc1.shape[1]
dev = desc0.device
ind0 = torch.arange(0, m, device=dev)[None]
ind1 = torch.arange(0, n, device=dev)[None]
do_pooling = True
for ni in range(nI):
desc0, desc1, att_score00, att_score11 = self.self_attn[ni](desc0, desc1, enc0, enc1)
desc0, desc1, att_score01, att_score10 = self.cross_attn[ni](desc0, desc1)
att_score0 = torch.cat([att_score00.unsqueeze(-1), att_score01.unsqueeze(-1)], dim=-1)
att_score1 = torch.cat([att_score11.unsqueeze(-1), att_score10.unsqueeze(-1)], dim=-1)
conf0 = self.pooling[ni](desc0, att_score0).squeeze(-1)
conf1 = self.pooling[ni](desc1, att_score1).squeeze(-1)
if do_pooling and ni >= 1:
if desc0.shape[1] >= self.n_min_tokens:
mask0 = conf0 > self.confidence_threshold(layer_index=ni)
ind0 = ind0[mask0][None]
desc0 = desc0[mask0][None]
enc0 = enc0[:, :, mask0][:, None]
if desc1.shape[1] >= self.n_min_tokens:
mask1 = conf1 > self.confidence_threshold(layer_index=ni)
ind1 = ind1[mask1][None]
desc1 = desc1[mask1][None]
enc1 = enc1[:, :, mask1][:, None]
if desc0.shape[1] <= 5 or desc1.shape[1] <= 5:
return {
'index0': torch.zeros(size=(1,), device=desc0.device).long(),
'index1': torch.zeros(size=(1,), device=desc1.device).long(),
}
if self.check_if_stop(confidences0=conf0, confidences1=conf1, layer_index=ni,
num_points=m + n):
break
if ni == nI: ni = -1
d = desc0.shape[-1]
mdesc0 = self.out_proj[ni](desc0) / d ** .25
mdesc1 = self.out_proj[ni](desc1) / d ** .25
dist = torch.einsum('bmd,bnd->bmn', mdesc0, mdesc1)
score = self.compute_score(dist=dist, dustbin=self.bin_score, iteration=self.sinkhorn_iterations)
indices0, indices1, mscores0, mscores1 = self.compute_matches(scores=score, p=p)
valid = indices0 > -1
m_indices0 = torch.where(valid)[1]
m_indices1 = indices0[valid]
mind0 = ind0[0, m_indices0]
mind1 = ind1[0, m_indices1]
output = {
# 'p': score,
'index0': mind0,
'index1': mind1,
}
return output
def compute_score(self, dist, dustbin, iteration):
if self.with_sinkhorn:
score = sink_algorithm(M=dist, dustbin=dustbin,
iteration=iteration) # [nI * nB, N, M]
else:
score = dual_softmax(M=dist, dustbin=dustbin)
return score
def compute_matches(self, scores, p=0.2):
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
indices0, indices1 = max0.indices, max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
zero = scores.new_tensor(0)
# mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores0 = torch.where(mutual0, max0.values, zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
# valid0 = mutual0 & (mscores0 > self.config['match_threshold'])
valid0 = mutual0 & (mscores0 > p)
valid1 = mutual1 & valid0.gather(1, indices1)
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
return indices0, indices1, mscores0, mscores1
def confidence_threshold(self, layer_index: int):
"""scaled confidence threshold"""
# threshold = 0.8 + 0.1 * np.exp(-4.0 * layer_index / self.n_layers)
threshold = 0.5 + 0.1 * np.exp(-4.0 * layer_index / self.n_layers)
return np.clip(threshold, 0, 1)
def check_if_stop(self,
confidences0: torch.Tensor,
confidences1: torch.Tensor,
layer_index: int, num_points: int) -> torch.Tensor:
""" evaluate stopping condition"""
confidences = torch.cat([confidences0, confidences1], -1)
threshold = self.confidence_threshold(layer_index)
pos = 1.0 - (confidences < threshold).float().sum() / num_points
# print('check_stop: ', pos)
return pos > 0.95
def stop_iteration(self, m_last, n_last, m_current, n_current, confidence=0.975):
prob = (m_current + n_current) / (m_last + n_last)
# print('prob: ', prob)
return prob > confidence