Spaces:
Building
Building
import subprocess | |
import sys | |
from pathlib import Path | |
import torch | |
from PIL import Image | |
from .. import logger | |
from ..utils.base_model import BaseModel | |
roma_path = Path(__file__).parent / "../../third_party/RoMa" | |
sys.path.append(str(roma_path)) | |
from romatch.models.model_zoo import roma_model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class Roma(BaseModel): | |
default_conf = { | |
"name": "two_view_pipeline", | |
"model_name": "roma_outdoor.pth", | |
"model_utils_name": "dinov2_vitl14_pretrain.pth", | |
"max_keypoints": 3000, | |
} | |
required_inputs = [ | |
"image0", | |
"image1", | |
] | |
weight_urls = { | |
"roma": { | |
"roma_outdoor.pth": "https://github.com/Parskatt/storage/releases/download/roma/roma_outdoor.pth", | |
"roma_indoor.pth": "https://github.com/Parskatt/storage/releases/download/roma/roma_indoor.pth", | |
}, | |
"dinov2_vitl14_pretrain.pth": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth", | |
} | |
# Initialize the line matcher | |
def _init(self, conf): | |
model_path = roma_path / "pretrained" / conf["model_name"] | |
dinov2_weights = roma_path / "pretrained" / conf["model_utils_name"] | |
# Download the model. | |
if not model_path.exists(): | |
model_path.parent.mkdir(exist_ok=True) | |
link = self.weight_urls["roma"][conf["model_name"]] | |
cmd = ["wget", "--quiet", link, "-O", str(model_path)] | |
logger.info(f"Downloading the Roma model with `{cmd}`.") | |
subprocess.run(cmd, check=True) | |
if not dinov2_weights.exists(): | |
dinov2_weights.parent.mkdir(exist_ok=True) | |
link = self.weight_urls[conf["model_utils_name"]] | |
cmd = ["wget", "--quiet", link, "-O", str(dinov2_weights)] | |
logger.info(f"Downloading the dinov2 model with `{cmd}`.") | |
subprocess.run(cmd, check=True) | |
logger.info("Loading Roma model") | |
# load the model | |
weights = torch.load(model_path, map_location="cpu") | |
dinov2_weights = torch.load(dinov2_weights, map_location="cpu") | |
self.net = roma_model( | |
resolution=(14 * 8 * 6, 14 * 8 * 6), | |
upsample_preds=False, | |
weights=weights, | |
dinov2_weights=dinov2_weights, | |
device=device, | |
# temp fix issue: https://github.com/Parskatt/RoMa/issues/26 | |
amp_dtype=torch.float32, | |
) | |
logger.info("Load Roma model done.") | |
def _forward(self, data): | |
img0 = data["image0"].cpu().numpy().squeeze() * 255 | |
img1 = data["image1"].cpu().numpy().squeeze() * 255 | |
img0 = img0.transpose(1, 2, 0) | |
img1 = img1.transpose(1, 2, 0) | |
img0 = Image.fromarray(img0.astype("uint8")) | |
img1 = Image.fromarray(img1.astype("uint8")) | |
W_A, H_A = img0.size | |
W_B, H_B = img1.size | |
# Match | |
warp, certainty = self.net.match(img0, img1, device=device) | |
# Sample matches for estimation | |
matches, certainty = self.net.sample( | |
warp, certainty, num=self.conf["max_keypoints"] | |
) | |
kpts1, kpts2 = self.net.to_pixel_coordinates( | |
matches, H_A, W_A, H_B, W_B | |
) | |
pred = { | |
"keypoints0": kpts1, | |
"keypoints1": kpts2, | |
"mconf": certainty, | |
} | |
return pred | |